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Chapter 1;N%3NTRODUCTION 1

National Assessment-Overview

The National Assessment orgEducational Progress (NAEP) can be viewed

as an annual series of large-Scale sample surveys designed to measure the

edudational achievements of four age gropps in 10 subject areas. The four
I

specific age groups include all 9-year-olds and 13-year-olds enrolled in

school at the Ume'of assessment and all 17-year-olds and young adults,

_ages 26-35. The first assessment of science, writing, and citizenship

spanned the 1969-70 school year. Subsequent.assessments have been conadated

- during the 1970-71, 1971 -72, and 1972-73 school years. At this writing,

the Year 05 assessment of .Career and Occupational Development (COD) and

Writing is underway, and'plannidg for tEi Year 06 assessment has begun.

National Assessment respondents answer questions and perform tasks

much the same as they would an a typicalfechievement-test. One aspect ofv.

Nation:1k Asses6ent thatXstingpisheS 4 from the typical educational
4

testing program is the way data areirephtted. Instead of calculating test

scores for each respondent and forming/ ormative distributions, results on

each released exercise are reported st arately. Unreleased exercises are

held back for reassessmeA2t in subsegj nt years so that trend measurements

will not be biased by school eaching to specific NAEP exercises.

The reporting of separate exercised,takes the form of estimated proportions

responding correctlY,within variout subgroups of theetarget population.
T

Group effects that contrast the proportion of correct answers for a specific.

subgroup against the corresponding national proportion are used to detect
. ,

variations in knowledge, understanding, skills, and attitudes among various

segments of the population. With this method'of reporting, it is not

'necessary for each respon4ent to complete the entire set of exercises.

Subsets of exercises, called packages, are formed; which take approxiChtely

50 minutes each to complete. 'If 10 such packages are formed for a particular

age' -class assessment, then 10 noneilerlapping samples, each representative

of the target population; are specified and assigned a particular,package.

Beginning with the early planning stages of National AsSessment, careful

attention has been given to the design end implementation of efficient

a
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robabil sampling methods for the select on of age-class respondents
,

or
and the as ignment of paCkages:. With the e methods, it is pOssible for

. _ NAEP resea chers tb make relatively precise statements about relevant popu-
,-,_i

lAtion.dh racteristics on the basis of fairly small samples, The purpose

of this Rograph.ia to describe what is mi.pnt by relatively precise state-

ments abo t population Characteristics and to show how National Assessmeit

sample a are being'usesd to gauge the accuracy of reported results.

;4- Population Characteristics and Sample Statistics

While statisticians and other researchers familiar with survey methods

are well aware of the inferential "leap" that is made when sample-based

results are taken to represent population facts, many users of sample data
.

,do not readily distinguish betWeen population parameters and sample statistics.

It is the researcher's obligation, therefore, to poin't out that his survey

results are an imperfect approxiMatioh of the truth, an approximation whose

accuracy is limited by his financial` resources and His,sample survey skills.

4 The aurces of error that plague sur1ey results are numerous. Many of

these eyror sources--such as unuseable responses to vague or sensitive
.0a

questions; no response from particular sample members; and errors in coding,

scoring, and processing the data--are beyond the control of the sampling

statistician. The monsampling errors are also common to complete enumerations

of.a target population, su ch as 'the U.S. Decimal Census. One advantage of a

Smell sample survey over a complete enumeration, in addition to the obvious

cost savings, is that a smalter,pore highly trained, and supervised field

force followed up by careful scoring and processing. of' the small sample data

may produce fewer npnsampling errors per respondent than the large unwieldy

ce nsus operation..

'In addition' to poor response, nonresponse, scoring, and processing

4 errors, sample survey results are innaccurate precisely beca use they are based

on a sample and dot on the. entire population. Considert for example, the

population percentage of.aleat-olds who can`answer a particular science

exercise correctly.' For a specified sample design and selection procedure,

a very largeinumberof possiblusamples could be realized. Supose that

s S indexes the Eotalitrof possible samples that could be drawn

in accordance With a specified procedure. gprobabilitv sampling method is
a

t'
.

i
2
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distinguished" by 4,he fact that each saiple-s has a known nonzero prObability

or being selected. If we denote this ptobibility of selection by -(s) and

let P(s) denote the sample-s estimate for the percentage of 9-year-olds who
.

can answer correctly, then

w S . i .

A E(P(s)1 is 'E a(s) P(01 , (1,1).. / ,

, .sg.1
f

-
1

is the expeCtation, or expected value,-of the sample statistic P(s). This

expectation represeni.s the average vilue, of the 'estimates P(s) over a con-

. ceptually infinite sequence of 'repeated sample draws with s).denoting

the frequenCy,of occurrence for sarap.le-s:---- If this expected value does not
. .

equal the population parameter of interest, 'say P; then P(s) is' said to be

a biased estimate 6f P. The magnitude of this bias is specified by
. .

. . . .
lo Bias.{P(s)3 is (E{P(s)) P3. , (1.2)

.. .

Bias ih a sample statistic may be attributed to nonsampling as well as

& sampling source thai ±s, siLstics that would otherwise average out .

1

to the true population vale can miss the mark-if nonresponse, measure ment,

orprocessing errors 'are 14de. It the absence of nonsampling errors,

probability samples prolridefizr unbiased estimation of population totals dt
like the numerators and denominators of NAEP P-values Othe otner.nand,

.- .

strictly unbiased estimates for ratios of population totals are often unavail-
.

able. The i'ampling'Siases associated with, ratio. estimates are generally .

negligible when large-scale probability samples are involved. Some empirical \..

evidence for this contention is presented in chapter 4, where the.sampling
4

.

biases of NAEP P-value* are studied.. '

Besides the systematic errors that cause the sample estimate to miss
d

the mark on the average, one must also recognize that it is possible to

hit the target on the average 41.e missing .the,bull's-ey

in some.sa*les. . To quantify these random sampling fluctuations,

statisticians. have defined the samplihg vaAiance of P(s) as

,

CP(s)) E

S'd 1

Ver 7(s) Ns) - E{P(s)})
2

(1.3)-'

s -i
d

.1.
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This quantity represent the squared distante between the sample-values\ . _._,........--/- . . . . . ,

and'their expectation or centroid averaged over an infinite sequence of
.

-. . ..,
sami4e draws. A more appropriate,measure of'sample dispersion for a,

.

biased estimator is the mean squared error, a-weighted average o- f squared

\differences between sample values and:the true population value P:

S 6

APSE P(s)} n(s) (k's) 112 .

sal °

The' mean squared error of a sample statistic has an obvious relationship

to 4s bias and variance; namely,

MSE (P(8)) Bias
2

(P(s)) + Var {P(s)} :

The quantity most catcmcsly'used to chiracterize. the sampling variation of

a statj.stid is called the standard error or SE {P(s) }, where

(1.5)

SE (P(s)) [Var (P(s)
112/2

Ail analogous. quantity for biased statistics is
. .. .

TE {P(s)} IMSE (P(s))!
1/2

I

(1.6).

(1.7)
4

k
often called the "total error" or root mean squared error.

A It is apt/went from the definitions in equations 1.3 through 1.7 that

the true value of these sampling error measures 4annot be determined from
a s ingle sample. It is possible, however, to produce valid estimates of

these quantities using the data obtained froi a well-designed probability
q 00

sasTle. Probability samples which provide for estimating the sampling

...variability, ordinarily the standard errors, of sample statistics have been
called measurable (ref; 1). Ex4mples of nonmeasurable probability samples
include systematic random selections from lists exhibiting periodicity and
stratified random samples with a single unit selected per stratum.

National Assessment A's committed to the desigi of measurable samples,
eamples'whioh provide for reasonably valid estimates of stielard errors.

. .Th#se standard errors, ueed in,connection with respected statistical con-\
ventionstsmake it possible to bridge the gap between' sample estimates and. . .
population facts. A statistical framework for inferring population P-values

...

and fir inferring group effecits fioq sample effects is outlined in the\ .

4f011oqing section.
.

...

4

4
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Statistical inference - )

,. .
.

.

%.
, Cb(denrit Intervals. (

N,
When one makes" inference from a sample.icout the magnitude of a popu- 611. v...

--.
. .

lation parameter, like:42, by quoting a sample estimator P s), it is common
., . . .

Gt tical practice to include a range or interval of
.)

values about P(s) .

i
V .

.

which likely to contain the true population value P.' Such intervals

are co only called 'confidence intervals" in the statistical literature;

they frequently take the form

LP(S) P(s) k se,{P(s)}

where k is a constant and se Ms)) is the estimated standard error for

the sample statistic P(s).... The ''confidence coefficient" associated with

such an interval 'is the probability that a randomly selected sample. will

yield an interval If(s)
.

(s) that includes the true population value P. .

Recalling that we have S possible samples which axe realizedith prob-
.

abilities r(s), this confidence coefficient can be specified by defining

A(P) aksthe set of samples where the interval Ip(s) contains P and letting.

.

y(P) se :r(s) (1.9)
'serk(P)

denote the probability that tht-interval associated. with a randomly selected

sample will Contain P. Notice that the summation in equaSion 1.9 extends

over all samples-s which belong to tht set A(P) [seA(P) denotes s belonging

to A(P)J. In empirical terms, this probability statement means that, in

a'conceptt;ally infinite seqUence"of repeated sample draws, a fraction"y(P).

of the ceiresponding intervals will contain P.

In order to specify a value of k in equation'1.8 that will yieldvan

inter/Ai with given confidence coefficient y(P), one must know the samRling

distribution of the standardized variable

I.

.

t(S) mg (P(s) - P)/se (P(s)) . ......../ (1.10), .

. Noticthat the set A(P) of samples wIth:1.2(8)0 (17(s) containing P] Is

equivalentto the set/of samples with It(s)1<k. It is clear that the
,

sampling distribution of t(s) cannot be specified exactly without a"Complete

enumeration of the target population. To:pursue this line of inference, .

* ?I
.

... -
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sampling statistnians commonly assume that the sampling distribution of

t(s) can be approximated by Student's T distribution ,,with (df) "degrees of

freedomor bx the standard normal distribu tion when df exceeds 60. The
A 0

A

rationale feirtIrersauription rests on the tendency of statistics like P(s)

#om large probability samples to have normal -like sampling distributions.

With P(s) approximately normal, the sampling distribution of t(s)

resemble Students T with, the appropriate degrees of freedom.

For stratified multistage sample.with a total of n primary sampling

units (PSUs) selected from H priiary strata, the degrees of freedom

associated with t(s) can be approximated by df = (n-H). Some authors pave
,recommended a more sophisticated approximation for df attributed to

Satterthwaite fief. 21. Satterthwaite's approximation attempts to account for,

unequal within-stratum variance components and,aiying stratum sample sites.

The results of some recent empirical studies summarized in chapter 4 of this

monograph seem to indieeve that*the naive 4pproximation for df, namely

df = (n-H), is to be preferred.

A further characterization of a y(P) confidence ilitervd1 can be made

in terms bf its so-called Operating Characteristic (OC) curve.. lbel.s OC

curve summarizes the probabilities that pAnts P* other than the true value

P will be included in dip interval.corresponding to a randomly selected

sample. If lab let y(P*) = Pr (Ip(s)cP*) where Ip(s) has the form in

equatiori'1e8 then

.

ya*) = Pr ilt(8,4*)1 < k} (1.11)

where

t(s,A') [P(s) -,P*1/s,?(1'(!))

t(s) + (Pr-P*)/se {P(

,t(s) 4*/se {P(s)}

hils the form of Student's noncentral T statistic pith df degrees of freedom

., and noncentrality oaf meter 6* = 0/SE(P(*. F values of P* deviating

considerably from the true value P, one would hope that y(P*) would be small.

It= is important to note at thi's point that, 'for a givell.sample design

and an estimation scheme characterized by SE{P(s)} and.the degrees of

freedom -df associate0dEh 'pe(P(s)), the entire OC curve is specified once

ID
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k is set. Wit h this in mind, it' is clear from equation' 1.11 that, wale

an inctease in k will raise the confidence level, y(P), olthe associated

interval it will alsoiinfrate the probability of including unwanted valuesf

Another way, of viewing this relationship between increasing eonfidenteand

the inclusion of more unwanted viluig 'tPit 4 P) is gained by observing that

the expectedlength of a random interval suth as T (s) in equation 1.8 is
-

directly, roportional to k, Heave, the greater the confidence coefficient
0

the wider the interval. The value oil is'uost commonly sett oyield

confidence coefficients in tlneighborhood of .95 of .99. 4

Significance tests

When a sizeab/e group effect is observed in the sample, one can ask if

it is likely that such an effect could be due sadly to sampling variations.

To answer such questions, statisticians have devised an inferential 'structure

known as the test of significance. We_will describe this structure in thej .

- context of National Assessment "group effects":

GP
G- "G
(s), (s) P(s)]

where,P
G (s) denotes the sample-s estimate.oi the proportion of group G

meabers who can'enswer.a particular exercise correctly and P(s)-depicts

the corresponding proportion for the entire population. Group G could,

for example, denote the 9ryea.r-olds residini in NAEP's Northeast region,.

in which caee
G
(s) woad comparA e the performance of the 'Northeast

9-year-olds against the overall national pipeptmance.of 9-year-olds. $

An. observed group effect APG(s) is judged to be significantly,different'

from zero if its abRolute value exceeds a.critical value C.- The critical

value is determined so that the probability of observing an absolute effect

APG(s) in excess of C,when the true population effect APG is zero is less 4/--4

than some arbitrarily small probability a. This probability a.of declaring

an' observed sample effect significant when in..fact the true population effect

is

xerot called the signiffcanc$ level of the test. Commonly used

significance levels are a go .01 and a 1.; .05. Thecriticil value C frequens

takes the form

it

C (s) k se (PO))

0

(1.13)

P



where k is ,a constant and seCAP(s)) is the estimated standard error for the

group effect AP(s). The subscript 9 designtting a particular subgroup, has

been dropped from the group effecesztabol in equation 1.13 to simplify our

notation. It we let A(0) denOte the set of samples for which AP-(s) exceeds

k se {AP(s)} in absolule value and use'`
.

ct(AP) r(s)

scA(AP)

to denote the probabiliEy.that an obberved group effect AP(s) will be

judged significant, then ct(AP) can be expressed as folidws:

where

cv(AP). ir{lt(s,691>k)

(1.14)

.

(1.15)

t(s,AP) mg AP(s) /se {AP(s)}

w [AP(s)`- APVse(AP(S)) + AZ/sefili(s))

t(s). + AP/se{AP(s)}.

,lotice that, as with the bc curve presented in equation 1.11 for CUF confidence

interval, et(i?) ca 'be specified in terms oethe.sampling distribUtionl-of a

statistic t(s,AP) will* has the form of Student's noncentral T statistic.

'If AP, ,the true population group effect, were zero, thenoct(0) Pr {jt(s)j> k)

represents the sigoifiiance level of the test with t(s) taking the form of

Student's centrar I statistic. For populations with &POO, ct4AP) give's the

probability of declaring significance when the true group effect is AP. Taken

as a function of AP;, the curve a(a) described in equation 1.15 is called ,
, the power function of Ale 'significance test. As AP deviates increasingly

1
from zero, onewould,hepe %that ct(AP), the probability of declarfhg signifi-

I "
,cance, would Ase sharply.

While .the OC curve for our confidence interval could be completely

determined if the populatioj was fully speciffid, only one point ,of the

power curve can be determined: namely, that point corresponding to the true

-group effect AP °. Theother points are conceptual in.theisense that they
.

'specify what' the probability of declaring significance would be for a similar

,ropopulation wheys the true group effect,,Was AP*1110°.

8
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1 P

...rescribing a critical,value for a test of significance that will yield

- a predeteriined significance livel a presumes. knowledge of ,the sampling
,

f N

. distribution of t(s,1?) is AP(s)4seta(s))'for a conceptual popuOtiow, which.- .'.
ik like the Populatioh.of interest and is 4 negligible`,.

1: . .

. "group effect AP 1! O. At thfs,pointi aspgs the Rase wi confidence
- . .

10 .

intervals, statisticiane commonly assume that Student's central.I distribution ypu1d be a reasonable approximation for the sampling distr45.-4
-r, . , . .

butiod of t(1,4P) TrOm a population with AP = 0. If the dfgrees'of ireedbmr

= 'associated with"se(g(s))texceeds 60,fone can effectively use the standar.d

normal. distribution to
.

determine.k such #hat Pr(.'t(s,0)1> k) =.a. Typical
1

values of k"trom the Standard normal distribution.are k = 1.96 for a

significance level a = %OS and k el 2.58 for a significance level. of 4 .01.

E:mmining the dorm of the "poweig function" in equation 1.15 cakes it clear
. . .

t)at, %4hile ope,:a09 reduce the risk of faliely declaring signiki
.

nce (that

is reduce a) by increasing k, there will2il'e a corresponding-reduction in. / . ...

the power to 'declare significance whe tile true group effect a deviates
.

from zero. This same relation4nip was died between increasing confidence
, ..

coefficients and lengthening intervals. _.e. . N
IIn additidnto the direct Comparisons betweeir. subgroup and national .

.
.

, proportions of correct answers whiCh we have Called group effects, National
. .

sAssessment reports adjusted or balanced effects wilich attempt to correct
, .:.

.

for the masqueradIAof one characteristi'c"as the effect of another. While
4. the unadjusted. group' effects properly reflect the differences in achievement, ,

between specific groups of children, much of-the observed diffi6rence 9a.i.
-410.

well bt attributable to otlier factoFs,on ithieh the ,compared groups differ.
4 A.

'ior,example$ part qf:thloodefiCit in 'achievement observed in
0
th,e directj.

"comparilon of Black, students with non-Blacks may be attributed to the fact

that -Black students tend, more than non -Black students, to haVe 'less

educated parents. In the £41oving Section, the adjustment methoaology,
4.0.used by National AsseSsient to compensate for some of this...masquerading is

presented. .
)

. '--;

. ,

3.

- .Balanced Effects . 0
$ , . ,

. gr. .. .
IliThe major popuPtion subgroupings used in National Assessment reports

. ..
are: 4ge,

...

Regipn, Size and Type of Community '(STOC), Sex, Color, and.

.
Nc ',"4 .

.
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Parents; Educatiod. Within thp four age classes, group''effects contrasting. -

. . , 'tiii levels. of
:

the other five factors are prebented. As We have indicated,
. - .

these direct comparisons cross the levels of a single factor are subject

to masquerading inflgenc

partially due to theunbal

f the other four factors.' This confusion is

ced mix of these other c haracteristics across

the levels of any single factor being examined. To balance out ehis dis-

proportionality, National Assessment forms adjusted group effects (exprelsed

in peiCentages) that, when combined by addition with each other and with

the overall "national:" percentage of success, give fitted percentages of

success (P-values) that correspond with the actual sample data in the

.

following

If wk. hay level ofta single characteristic, say Blacks;
and use ,fitted P=-value Aid estimated population size to
calculate the number of successes for each Region X STOC x SEX x ,

Parents_Education.subclass ofIllacka, andeben add ti4se predicted
numbers of successes. the predicted nu4er.of successepover all
these subclasses will be the same as the total number of Black
successes estimated from thesample data.

.//
If we let, i - 1(1)4 inden NAEP,'s four regions; j .1 1(1)7 the seven

STOC categories; k2 the two sexes; I w 1(1)3 the three. color dal:31mi;

' add'm 1(1)5 .NAEP's five levels of Parents' Education,ithen the fitted
'

P-value foe subclass (ijkim) has',the form
,

".
/

-. . .

DE m)i.1)-+ AR( (j) + AS(k) + acoo + avm1 (1.16)
. 7f .:"Bal

, ' ,,.

% .
.

- It .-

i....
where P is the overall'(ndtional) percentecorrect and.Ohe A terms represent

. ,

:
. .-

,the ;Balanced' group effects for Region-i, STOC-j1 Sex-k, Color-1, and

Parents' Education. class-m: With Wijkli tang the. estimated population

size 'for subclass (ijk &m) and Y(ijk2,m) represpn g the estimated riumSer of,

. correct responses from this subclass, the balancing condition verbalized. ,

4 -
%above translates-tint° the following equations:
.

. .)

P

. i 2 3 5 a ^

E E E

,/

P(iJklm) Y ++++) for i 1(1)4 :(1.17a)
kmel Zs./ ;mil Bel .-

4,

114 -2 3 p .

' -E E t 'I Wijklmrim(ijk2,m).., Y(4j+++) for j 1.1(3)7 ., (1.17b),
m 4-141 tol ml : Bar'

,

. ,

.

.4

1
10'
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.

. Similarosets of equations arb produced for the other three classifications
. .

. :

,by summing over all the subgroups within a paracnier factor. level and
. .

;equating to the estimated total correct for that factor level. Notice that

we 'nave used a plus si3n to dioncte a sussed over subscript. Substituting

the linear main effects model it (1:16) for P(ijkLm) the fitting equations
,become: BA1

7 2 .

' N(i)P M(i)!R(i) t it MUD AT(j) + M(ik) AS(k) (1.18a)
' /

3 - 5 .
+ I M(1.04(Z) + ; M(im)LE(m) 0 '1(i), for i - 1(1)4

2.1 =1
1. .,

. . .

.,and

. . 4 . , . .1

M(j), + ; 21(ii)4a(i) ' n(J)1T(j) + : n(jk),15(k) (1.18b)
r

t :Lail . . k...1
.

. ,

.3 . 5 a . .

, .i-' E M('jL)6C(1) * : M(jmni(m) - Y(j) for !.. 1(1)7
.7,..1 =mil

r

. 1The, other
,

three sets of fitting equations are arrived at similarly. Notice

that we have suppressed the summed-over subscripts to make the expressions
,..

, i , ttoreolompact. .-.
7

Since each of the sets of fitting equations correspomditg to awparticular
r

classification factor sus to the same quantity, namely

4

. M P + i .M(i)alt(i) t E M(j)=Z(j) M(k).1S(k) (1.19)
j.1.

3 5 - -
. Z 34(2.),IC(1) Y lWaE0:0 Y

mr1

one the equations in each set is-red=dant. That is, of the 4 + 7 + 2 41

3 + 5 r 21 balancing equations produced in this fashion, only 16 ape indepenment.

To solve for our 21 balance4 effects we need five.aninional equations.
Jo' '

Requiring that the overall," in our model (equation 1.16) be equivalent to

the =adjusted national ?-value / n) implies in equation 419 that

4

%F.

It 0

4

11

15
.00
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,4 .., 1, 7*. ' 2 , 4._. A ,. A . .
.

11(i)..411.(i),,s I ft (j ).:IT (i ) '',..' :-.?''.,U(Is) ZS (k)

i1 , , j .1 - , killl:
a 0

...f r
4.

(1.20) fi.

,- 4 ;. ,
,* 1 X(24e(I) = I "4(m)4E(m) ..; / . .

Z*1 ...

i: ..-111' .

. .a ,

. ,..- c ,r,. s

Setting each of these's= eqial to zero yields five Independent equations,.

whi0 can be subsktituted 'respective*Or the lait equation in each of the

original five sets. This yields 21 independent equations, which can be,.
. , . .44

. .-

solved to yield the nlf set.of balanced-iffects.
0 ,.

While this b &acing solution was not derived with the least squares

principle in Mind, one can vii,mthe results as a sample estimate of the
. t.

-ieast squares solution` shalt would; be obtained iftheentire population of

- correct - incorrect (1r--0) respoakei werq predicted by a linear model with an
)

intercept and 21 da=my variable's indicating membership in the 21 factor
. 4

level subgroups. The weightect'restrictions in equation (1.20), with the

"hats" removed from thi popufation sizes OS), are c7==onl% applied to

unbalanced data sets. This dummy- variable regression -view of NAIP's balanced
N, ._fitting platei the resdi-s in a familia- atatis-4calfsetting where the

,Ogaajustment of regression coefficients for unbalanced repfesentation across
1

categories "is a well-known` 'Property. ra
,,

While balancing helps, to' co for, dispropdrtionate =bars, this
adjustment is obviouslysli=ited-to the variables thaAQ

$
t are used in the

. , * .
_.

analysis,. Other nameasurreevitfrables such as 'family income =ay also be ,.

catsing mak9ueridiag prol4eas 'Some variables used in the adjustment, such
,

.

as, color, w 'classify respondents too coarsely; while other factors, such

as parentfs
.

edmTion;' give'orfly,an indirect indication of the parents'.

attiLdi toward edtication, or ;heir, inclination to. assist' with

homework. Another potential problemCWith_dirett comparisons beeeen sub- .
. . ... . ,
Aroups,fs'the'tact that "the .'Rerfor=ance of a given subgroup may differ from.

ade subgrouping to another in-the other variables. That is, the effeCts
.,_

.,

associated with Back etude:Its =ay be different, in the West than in the
6 0

- _Southeast. Stich interaction' effects are not accounted for in NAZP's-balancimg
kmodel. In spite-of these deficiencies, balancing represents a big stem from

.4: ,.
,, - , ''' .

. .

0

14'

\
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the outward appearances of unadjusted group effects. 'toward the inward

realities of caute and effect.
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Chapter 2: YEAR 01 SAMPLING ERRORS

II

IC

Design Description .

The NAEP Year 01 sample for the three in-school age class (9, 13,

and 17) began with a highly stratified, simple random selectio of 208

primary units. These primary units ,consisted of clusters of schools formed

within selectedlistingunits. the listing units were counties or parts

of counties. Variables) used-to stratify these listing units included (1)

Region (4 Geographic Regions), (2) SOC (4 'Size of Community' Classes),

and (3) SES (2 Socio-EconomicaStatul Categories). Within each selected.

listing unit a separate set of schools was selected for each of three age

groups: 91year-olds, 13-year-olds, and 17- yeaprolds. For each of these

age groups, schools were grouped such that every set would contain a mix

of high and low SES students.. Portions.of some large schools were allowed

to belong.to more than one group. The number ,of schools` in each of these

clus:ters was based on the numbers of packages or questionnaires required

from each PSU. The 17-year-old,assessment, fqor example, employed 11 separate
43*

group-administered packages and. 2 individually administered packages. Grou p

administrations consisted of 12 students, while each individual package was

given separately to 9 students in each PSU. :

The sample was designed to yield two primary units from each of 104 stra-

ta.` Fbr the 17-year old assessment, (11 x 12) + (2 x 91 350 students -,:ete

required from each PSU. The groups of 17-year-old schools were constructed

tocontein approximately 300 17-ydnr-olds eacp. Once a cluster of school's

was selected via simple random sampling (Sy) from those constructed, the
' A

group packages were allocated to schools. nth school in the clUster was

assigned a number of group,a4ministrations roughly proportionil to its en- '

rollment of 17-year-olds. Sixteen students were selected for each group ses-

sion assigned to a particular schoOl: 12 to' participate and4 to be alternates.
.

The two individual packages were allocated to schools such that for
;

each group package from 1 though9.asSigned to a qdhopl,an administration.
.-

of individual package 13 was also planned. individual package 14 adminfstia-
. .

tions were similarly,liAked to ad9lnistratiens of group packages 3 through

11. For each,individual package administration planned for a school, two
'S

co

e 15 -.. &

!: ..
... . et. ,,, .

.13
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stpdents were selected, onp to

design yields a planned sample

administeredpackagend 1,836

The Year 01 out-of-school

participate and one alternate. This

size of 2,448 students for each group-

for each individual packagm.

sample of young adults 26-35 and out-of-

school 17-year-olds used the'same basic primary sample desigrias the

in-school sample. The same random draw was used to selectIPSUs'in bath

samples; however, the out-of-school PdUs were define, in terms of a set

of area segments or.clusters containing an average of 35 to 40 housing .

N

units. Each of these PSUs was constructed so as to contaih about 16,000

persons. Ibe second-stage apple was a stratified random cluster sample

with two clusters selected without replacement from each of five strata.

The stratification was based on an ordering of segments in terms of the

_,*precent of families earning less than $3,000. The high poverty (low SES)

quarter of the list was assigned two strata for a 'two -to -one oversampling

of the'low SES quarter., Each household cluster was expected to yield 12.5
r -

4igible adult respondents, Ten packages of exercises wire administered

to young 'adults with each respondent

Out-of-school 17-year-olds encounte

to respond to a set of four or fivE of. the 17-year-old in-school packages.

andomly assigned a single package.

d in the household sample were asked

Reca11 that there were 13 such wickages. An incentive payment of 10 dollars

was given /Or complAting.the set of packages.

i
--Parameters of, Interest

Proportions Correct (P -Values)

'The purpose of Natiohal,Assessment earX.was to produce baseline

spondents who would answer

ting.our attention to a'

estimates of the proportions 0 potelltial r

certain exercise .in a particular vv." Resta

particulas in -school,age,grobP (say 17 year -olds) and a particulae exercise

-within one of the Packages, 34t
i

- 1
. 1 if thelkt,th student in.school,(j) of.PSU (i) in

..

:4. '
141i k 4-- -stratt"-h answers, correctly;' 11 otherise . ' i

4,

. t
, I 11*

....

The pbpulatiOn means of these 0, 1. variables are the populatOn- proportions

t.. A

:of *interest, that is

4

A , 16

. d
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. H Nh ShiAij

where

H. =.the number orttrata (104 planned)

N.
11

= the nuinber of PSUs in stfatum (h)
g

Shi = he number of schools in PSU (hi)
---

Mhij
the number of'studentk in school (hij)

and

44-1-

H, Nh

h(E.

-3. i=1 j=1

H
hij

.

(2-.1)

t

)rf

Our sample estimates for these proportions are ofthe form
4;

.

A H nh shi mhiA

JP =EE EE.W
hijk

Y
hfjk

/W4.44.1. (2.2)

. h=l i=l j=1 k=l

where
.

,
nh = the number of PSUs sllected for the sample from stratum

, .

. : . 4

(h) (generally r, = 2) e

. ,

. n 4

ski a the number of schools.in,ZSU (hi) in whiff the particular

package of interest was administered

mhij = the number of students fiom school (hij),ulto respond to the

package of inierest;_

and, aside from nonresponse adjustments,
-

x Pr (Kid (k)1hij)) (2.3)17 " 1;Pr. (PSI/ (hi)f c Pr .1"Sch (3) (hi))
hijk '

with
a

Pr {PSU (hi)) ' ' nh/Nh -
.

- Pr IFH(J1,1 (hi) ) , ' 7bij ,.
.

1Pr (Kid ()1(hij)) =%mhliAhil.
.

,
.

..,

I.

or

.

17

a

)

I

A.
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For group-administered packages the number of sample schools per PSU (s
hi

)

was always 16in Year 01. Individual peakages were' administered in'more

than one school; that is, shi > 1 far Year 01 individual, package exercises.

The estimation of out-of-schoaT-young adult, P-values paralaels the

'procedure presenee'dfor the Year 01 in-school sahpli.. If we let j subscript

area segments instead of schools and k young adults instead of students, the

expressionsoin equations 2.1 and 2:2 are interchangeable. To complete the

witch, we lets Shi denote the number 'of segments in the RSU-hi frame and
. .

shipiA'nu;ber.of sample segment in PSU-hi (usually ,shi - 10).. Also, let

Mhij deplate the number of eligible young adults in segment-hij and mhij .

the number of young adults in segment-hij responding to a particular package.

The out -of- school sample weights reflect the selection probabilities for

young adults plus adjustments for nonresponse.

Out-of-school 17- year -olds located and tested in the household survey
.

were combined with in-school respondents to estimate a single P-value for

all 17-year-olds. The total nUmber.cf out-of-school 17-year-olds and the ,

. number that could'respond correctly were estimated for each 17-year-old

*pAckagh.using weight sums for all package responden and%for all respondents

answering correctly. These estimated totals were then added to the

package
.

denominator ;and numerator of the 1w-school pac age P-Valup. .
, .

Subgopulatibn P-Values and AP Values
b

In addition to the national"P*Values discussed in the previous section,
,

,

,certain subpopulation breakdowns were of interest. For example, 13-Values

have been presented by Region, STOCi Sex,. Color, and Parents'. Education. .

These subpopulation T-ValUep were produced by including only those observations

'bet aging tor the subpopulation of nteint in the numerator and denominator
X' . . .

of quation 2.2.. Differerices betw en subpopulation and national P-Nalues

wei.e'stuslied to assess the main effects of Region,' STOC, Coltr,
.
Sex, and

1 ,

Parentsl-Education. These direct comparisons were introduced as group effects
.

or AP-values in chapter 1. . -
.

-=

.

-

i'.Balanced Effects 40
.

In chapte 1 .we introduced NAEP's'algorithm for adjusting roue effects.
,

This adjustment was designed to correct for the masquerading e fect of,
411.

- 4. . 4 ..

21

A
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ancillary variables when their distributions vary across the levels of the

ifactor being examined. The adjustment or balancing algorithm used amounts
. . .

to a set of linear equations which can be viewed as a sample approximation

rto the normal equations that would result from a ,.east- squares fit to, the

%
population of 1-0 (correct-incorrect) responses based on an intercept and

-.----.---..
'''

dummy variables indicating the levels' of NAEP's five reporting categories.

A set of restrictions are imposed on the balanced effects, which force t

the linear model intercept to equal the observed national P-Value.

The lefrt-hhnd sides of.the.balancing equations involve weighted sample

estimates of population counts in the one-way and two-way margins bf

NAEP's Region by ,STOC, by Sex, by, Color, and by Parents' Education classifi-

cation. The right-hand sides of the balancing equations involve estimated

counts of correct responses from the five one-way margins. Suppose we let
.

Xhijk denote p 1 x 22 row vector for student' -k (adulLt or out-ox-school 17)
,

soboo::.-j (segment) of PS1.7-I in stratum -h with the first element equal 1 ,

for all respondents-hijk and the remaining 21 elements taking values 1 or

0 depending on the respondent's membership in the 21,subgroups formed by

NAEP's reporting categories (4 Regions, 4; 7 STOCs t 2 Sexes f 3 Colors +

5 Parents' Education classes). Recalling that
Yhijk

is 1 ifOspondent

(hijk) answers'c.Oirectly and 0 otherwise,e can specify the balancing ,

equations Prior.to substitution pith qle restrictions as
,

(XTX)i (XTY) (2.4)

where

and

;

H nh shi m,
T4 "J 7 .T

(X 4c) m E sE E E 1, '('''$.. X )

.

Ili 22x22. hijk nij hijk
h-1 i= pil k1 ..,,,

'N

nh T

CX /)22x1
t: 5' E E Whijk(hij14:hijk)

hull 1 5 -1 k -1

AT' A A A A A

,,<P, ARWu... AR(4), LTX1) .. ATt7),AS(1) 4S(2),

AC(1). Lao), 4i(1) >
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As _we. have noted n, chapter 1, the balancing equations in equation 2.3,
are not linearly independent since/the sum of the 2nd through a 5th
equations equals the 1st as do the 6th through the 12th, the 1 h and 14th,
15th through 17th, and the 18th through 22nd. To provide for a unique
solution and al the tine force t e intercept P to eq =1 the observed
national P-value the final equation in each of the five blacks, which
correspond ;o the dye rephrting v4riables, are replaced b linear
restriction on that var4able's balanced effects. For examp e, the fifth ,

equation in equation 2) is replaced by

111(1+++:1-)di(1) + ci(24),611(2) + fi(3-1-44+)ilit(p

+ 1-424-4++)LS(4)'1 d . (2.5)

This substitution can be accomplished by replacing the fifth row in
.

T , .,
(XhijOhrik) with i (1 x 22) row vector with all elements except the second
through the fifth set to zero. The, our elemegts in columns two through

4. .
five of the new fifth row take the values one or zero Ito

indicate membership
:

in legions Lthrough 4 successively. The fifth. row of TXT
Y

.

) is, hijk hijk
set to zero for every respoKxient-(hijk). When properly wleighted and

summed, it is clear, that kthe new fifth row of our individual balancing ''

i equations will yield the restriction equation 2.5. Similar substitutions
._,

of roars 12,- 14, 17, and 22 with the lihear equations in equation 1.20
.

'1 produces NAEP's restricted set of balancing equitions. In Our further.
.4

.
treatment of balancing, (XT

X) hijk and (XTY)
hijk will represerit the restricted

- .responcrenit-ch09 contribitions to the left-,and right -hand sides of the
,

balancing equations. Substituting these independent 1pear restrictions/
. for the redlindens rows of (XTX) and setting the corresponding rows of ,(XTY).

to zero allows one to specify the balanced, fit uniquely as

w re

T -1 T- Nx) (X Y) (2.6)
0.4

13 zit; Shi Illilij
(X

TX) i E E E Ef W (X
TX) -

22x22 .hijis hijkhil. isil 'j3,0,1 koll -

. - '1. f-

a

23
20

ti
* - - 11'w'
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-H nh Shi mhij
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T wEEEEW.
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hijk2axl h
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ance Estimators

'variance Estimators for P- slues and AP-Values

To suppolit the presentation o P- Values and P-Vilues, measures of the
f

sapling variability of these statistics were needed. A. jackknife replica-

teo ocedure for estimating the samplirig variance of nonlinear statistics

from'complex multistage_sampies was tailored toour design. This technique
4

is easily applied to highly stratified designs with only two primary units

(PSUs) selected with replacement or without replacement from strata where

the fpc (n
h
/N

h
).can be ignored [refs. 1,2]. The Year 01 primary sample

fits this description except for a few strata containing single primary .

units. These singleton PSUs are accounted for in the following section.

To demonstrate the computational aspects of this technique, we can

consider estimating the, variance of a national 1!-Value. -First we define
,

expanded- up ?SC vtals
.

1

-

I

0 so

and

.s
hi

mhij

2
hi

2. E t W
hijk

Y
hijk

(2.7)
It.1

s. m
hi hij

E Z. 11.7iiiiv.

k-1

(2.8)

ieCallipA equat'ioi.2.2, we see that the total Mhi represents the PSC-hi

contribution 'to our sample estimate of the number of 177yeaz-oltis in
s

stratum-h e
hi

is the PSU-hi contribution to the estimated number of

17-year-old's in stratum-h who could answer the question .cdrreptly. In

terms of these expanded P'SU totals, the P-Value becomes

o

H n H n
h A A

f =0( E Chi r ) I (Y /H) .

r

I.

21 24

,.- (2.41
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The jackknife estimate of .P,.say P".71c, and its variance.estimatoi are special

applications of the following general rdtult for a sample of H strata wit'

n primary selectionq per strata [ref. 3] (with replacement ox without from
n

strata such that nh/Nh is negligible).
;A

Let 05) depict a statistic based on data from all nh PSUs in each

stratum. Define the replication estimate e
-hi

constructed from all, the

PSUs excluding PSU -i in stratum-h. These replication estimates should be

produced as g this censored PSU,had not responded; that is, reasonable

nonresponse,atdjusiments should be used in estimating 8 witboutr:PSU (hi).
.

The jackknife pseudo-values Ohi are then formed where

0
hi

a n
h
0° - (n

h
-1)

:
0
-hi

. .(2.10)

.The jackknifed alternative for 9° is
..

..

.

° ff n4..t.1.511, .

g.; .. E E 61,4 /Hriii .

i (2.1i)-

h =l i=1 r .
.-

, f i 0
A

A consistent estimate of the variance of 0
Jlt

is :
- :t

where

an dj

~
var (9 ) a E s

2
(Oh.)/nh

hal

n
h

0
h.

E 0hi/n
h

hal

s2(Oh. ) a E .{e
hi

- e
h.

)2/(. n-1) .

.
.

hal .

. ,

Commenting on.an earlier draft of this report, Dr. David Ra Brillinger.
, .

[ref. 4] has pointed out that a pseudo-va1ue,of the form .

-.- ..

(2.12)

egi a Hnh Oo 7 (A-1)e - H(nh-1)0_hl.

would be more appropriate for a stratified sample [ref. 4i. This result

was obtained by approximating the expectations of

Taylor series of the ford"

25
22 '

;o,
u
-hi'

and e_h: with
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UflinA the series approximations above, one

- ) ydh second order. "

tes that

1; .
,

Therefore,,foi_Arillinger's alterative jackknife estimator

1.-

V

it is clear that'

E(it,). Z + sevnd-order terms.

H r
S*A 1*

-m
.

r.-3. i01
P,z/n.H

n

,

.. H ..

S-

'.:0r S - E- (n -1) ( h :-mo )
- h

hmo

J

Applying a similar argument, one can demonstrate that the jack:tife

estimator pzaposed in./equation- (2.11 ) contains first-order bias

terms;' namely,

E(sjx) ti - ,E:

)

-

h:1 ahinh
second order,

\.7"
'The variance approxiiimiion proposed for 2IK by Brillinger the form

-
ii , - .

di
.

s2 ^
vary, (S*.,...p) si s (S* ) /n. it''

...i., ys. h. n ...,

..r howl.
1.

The variance exprassion'above is equivalent to the estimator in quation
t v

12.12)
,

. . . 4,,
.. , ,_

Applying Brillinger's result to produce a jacklinifed estimate of
% A A s

P.- we first' consider the case were all n
h

- 2. If this were the
, ,

,case then
,

..
,

... .
. e . pir H ,

's R 0.,-40.- .
.

..

i II' E. (Yh +
Y 2) I

:. (Mhl :6 Mh2) :. N

1101' '1101
, I

e Oe-

(2.13) t
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Li replicate P-Values become
iA

- Y -(Y11 Yhed.
A

P. .

( ° " ,91/411 - 12),
.4

A A

Y (Fhl Yhr)p le
-h2 + 4'1

. '11 12'I
The first P-Value is formed by discarding PSU 1 in stratum-h and re-

placing its contribution to the numerator and denominator of P with the
4 .

data from its compaEion PSU.(h2). The second P-Value is formed by dis-

1 -

r
carding PSU 2 in,sttatum-h and replacing its contribution with that

from, PSU (hl). The jackknife pseudo-values become

A A

Phi s (.441)13 Hi-hi

an4 the jackknife P-Value is

Equation

9
2.16 shows that the jackknife P-Value.dis Ca l) times 'the standard

, .

.combined ratio: estimate mint; H times the simple average of the replicate
6 .

:P-Values. The varianceestimate fOr P .'ik
JK .

) \ . . H 2 A . . 1..
var

JK(PJK Ph.) . 1 (Phi - ) /2 H-.
h ial

,

2
p
jk

.
ni

/2H a (H+1)P
hal ial

I-

(2.157

. (2.16)

Considaing r (P81-- Ph.) /
i -1

s'

rpcalling that

1)pekel!..h. we need not bother with the pseudo -'values; that is,

. .

ia =2

A2 A.. A 22 A

.Z ,(Phi
-e

b.
)/21a E

1

(P-hi
- P

-h..
) a /2 (2.18a) '

'

-

1

h

C

24

27*

J



-1,

for n, 2 a convenient simplification for the expression in equation
P .

2:18a is

ti

2
-E "(P

-hi -h.
)
2
/2 m (P

-hl
- P

-h2
)
2
/4

,
(2.18b)

V
. .

The simpilified
I*

form for the jackknife variance estimator in equation

2.17a becomes

va F
-

)2/4 .
rJK( JK). hl -h21

(2.17b)

11

An aialogous app;icatidn'of this pechnique produces AP-Values from

replicates formed by successively deleting PSTs and replacing their con-
.

tributions with data from heir compinkon PSU. If these replicate AP-

Values
Wo
are denoted by Ai

-hi
then the jackknife AP-Value is AP

JK
where

with variance estimator

H 2

APJK (Hi-1)AP H AP-hi/2H
hill

.

varjK(APJK) E
(AP-hl ,

- AP
-h2

)-2 /4 . (2419)

hail

.

for those unfimilfar with the jackknife linearization technique

described above, it may be of inaresetoinote the relationship between

Vim
JK

(P ) in quation 2.17 and the standard Taylor series variance
JK

approximation or a combined ratio (reio 5). If we let 8Th is !Y
hi Yh2)

and.Mh
(14h1 7 Mh2)'

ehe,Taylor Series variance approximation fdr

. var 0) is

1, -1

H
- .varTS E* lay - pszihriqL (2.20a)



Or e

with

and

ado

^ - .2
var (P) E o 3h

TS .

. h -1 .

-. ---- ----

A AA A

(Yhi: P "LI) AI

OE
h

(a
hl

- 3
h2

).

(2.20b)

Examining the form of the jackknife replicate P-Valuesiis equation 2.14,

it is not difficult to see that

which leads to

612 (c-hl 742)

- 26301- 62k/' )

B
var

JK JK
I a'?

4,

h
/4

hnl

a
- e;n42)2'

(2.21)

(2.22)\-- r

Comparison of the Taylor series and jackknife variance estimators in

equations 2.20 and 2.22 points out the close analytic relationship be-

tween'the two. The quantity eill'I/M2 in the dencoinator of the jackknife

variance expression in equation 2.22 iscthe stratus -h, contribution to

.;- the estimated relative variance of M, where-

S
A

E
ref -var (M) hEI-6 104,

. .

29

.

26

(2.23)
-
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4

. Since relqe^ r (Y.} is positive Slid,generally Much smaller than 1, we can
. '

expect the jackknife variance estimator to be slightly larger than the

_corresponding Taylor series variance approximation,. One would also

expect the-differe4nce between the tiro estimators, to diminish as the nun-
.

ber of strata increase simce each stratum's contribution would represent

a smaller fraction of rel-ar (M). Same-numerical comparisons of
.

the

Taylor ieries aud jackknifevariance approximations will be presented in

.chapter-4.
it

Variance Estimators'for'Balanced Effects

Retelling the definitions of (X X)
hijk

and (X Y)
hijk'

the restricted

respondent-(hijk) contributlane to the left- and right-hand sides of ol
-

balancing equations, we begin by forming the,expandec PSU-hi totals
-

and .

hi mbij
(X. X)hi' = E E ahijk (X 'X) (2.24a)

'j=1

4, r
(X

T
10h4

j=1 k=1

These definitions allow us to specify the

stratum sums of thtfilirm

(X
T
X) = E [(X

7
X)

hl
4- (X

T
X)
h2

h=1

shi mhij.

and

:11111i-

4? ,(XT-Y
hij,k

quantities

ti

7` H T
XX

11Y)

a E- [(X Y) hi -
(X
T
Y) h2,

h=1

)
hijk .

(X
T
X) and (X

T
1') as

-

(2.24b)

The jackknife, replicate; estimator for the vector ,S of b

which is obtained by deleting the Contribution from ?SU

27 `30

(2.25e)

(2.25-0) ,

lanced effearts,

jnl and replacing



I

-7.17-4"6- !.%

it with the contribution from,PSU-h2 can be specified as the unique solu-
-. .

Lion to
,

the folldwing set of normal equations ...1

r . A

' where

and

f(X.X) - (soc
T

hl
l(xTy) 6(xTy)h)\

T
6(X X)h.4.1 [(X

T
X)h1,-

(iTx)h23

,

p

6(X
T
Y)1 [(XTY)

hl (XTY)h23

. .
. . ,

Deleting the contribution from PSU-h2 and replacing it with the PSU-hl

contribution results in the set of"normal equations,
.

i.'"
,

. .
.

'70. f

% , [(X
T
X) + 8(X

T

h
X) ) 0

-h2 4
2, [(X

T
Y) + 6(X

T
Y)

h
) (2127)' ^.

-
I

khiCh can .be solved or the replilate estimate 8 ,Jackknife p
: . .

. - .
. --h2*

values

t
.

- %,

. .

. Ohi - (4+1)13 - 48 (2.28)
1,,

-hi
, , . , y

A
.

are then formed from the repll.cat* estimators where B represents the,

estimated vector of balanced effects based on data from all PSUs. The
. .

jackknifed estimatorfor 0 is-then

4
g
.11C

E (0
hl

+ 8h
2
)/2H

A. A

- (4+1)0 - Hs

(2.29)

. o
p ,

. ,

To estimate the variance-covariance matrix of the jackknifed cto of
, .

,balanced effects, we use _ 1

. 31
(

. s.
4t . .

r. . . N

. il . .

#
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I

A ( H A ,A
var Ca ) -- 1- E. 6B

h
640h/4H

`h=1

A A
where, ds 8

h2 --S_H2]

.
TA

Notice that 621:is a (22 x 1) column vector and 6 0/1, the transpose of

41 a %

.
813, is a (1 x 22) row vector. The resulting quantity in equation 2.30

is theiefore a (22 x 22) matrix of estimated variances and covariances
.

among the 21 balanced effects and th'g Corresponding natIonal ?-Value, P.
, . 4-

In appendiX-A the corresponding Taylor series 'approximation for the

. variAce-covariance matrix of $ is derived. ibis method yields the

(2.30), -

. estimator

, var
TS

(g) E 63h 6T3
h

h=1
(2.31)

6i
h

[6(XTY)h S(X
T
))h

$1 .

Although it is not immediately apparent., there is again a close relation-
.

ship between the form of the jackknifyand Taylor series variance-cover-

* iance est4tators. Subtracting matrix-equation 2.27 from 2.26 and rear-

ranging.perms, one finds that

tor

where

and

4

:(XTX) 8$11 ' 2Hr SIXTY 8 (XTX)
h

(2.32))

A A, A

ash eh21 8 -h21

1'

A A A

11
(0 '-f

-h. -1 .-h2
3/2 .

29 :32
a

4,



A.
In solving the set of equations in eqq tion 2.32 for Oh, .the difference

between our two jackknife outdo values from stratum -h, yields

_

68
h

21I(X
T
X)

-1-
[6(XTY)h - 6(X

T
X)

h -h.
] (2.33)

' A

Using the expression for 6$12 presented in equation 2.33 shows that the

jackknife variance=dovarianceiestimaeor in equation 2.30 differs from
A

the corresponding Taylor series estimator only to the extent that
$

£he average of our two replicate estimators fr :m stratum-h, differs from
A

the estimate $ based on all the data. As themumber of strata increases,
A

ohe would expect the difference betty en $ and $..h. to get small. For

NationaileAssessment's Year 01 sample design with-104 primary strata,
. -

there should be little difference between the two methods.

Computational Considerations
../

The major complication that arose applying the procedures intro-

duced in the previous sections to Nation >1 Assessment data was'strata with

only ne PSU. To allowsethess strata to ontribute to variance, psuedo .

strata containing two or threc.of these singleton PSUs were formed, This
. ,

collapsing of_strata was done within regions and as much a7 possible

within SOC (Size of Community) supers;rata. Stite and county names for
,

these PSUs were also used ih the marching. When two PSUs from different'

strata are collapsed, some adjustment should bt made for the fact that

the stratum, sizes (Nr3) may be quite
I

different. One such adjustment is

to ;place the stratus expansion facto..- rs (N41) and (Nilfor the'two

singles with a common expansion appropriate ier a design withrtwoRSUs.

selected.from the union of strata -h and -I; that is, use the common expan-

sion factor (N-
h

N
I
)/2. When applied to °Ur jackknife methodology, this^-

adjustment amounts td replacing stratum-l's contribution to P with
f, ,/

^
... N (Y /N ) m N i

A -wa 0 h I 11, h I

Nh(HI/MI) - Net'

30 33

and-

/

r

(2.34a)

(2.34b)

A

. ,



r

We ave "boriowed" Fhe data frog stratum-4 in terms of estimated numbers

ot_17-year-olds per PSU (mz) andtesiimated numbers of correct respondents

(y ), but have retained the number of PSUs appropriate for stratum-h.

The contribution from stratum-2, is, similarly reped by stratum-h data,

but its number of PSUs (N4) is retainee. T4e adjusted replicate P-Values

for collapsing single ton strata-h and -2 are therefore:

P =
" Y- Y2 + NZ 5h 5.0

(2.35a)_z A__ .

-.Hi + Nh 1/712, (1-11 ;2)

and .

--h IA A
P =

C -Yh + Nh 521 if Nh ,(511 50
- q;.35b).-..

. .

. H Hh + Nh ;12, 11 Nh (11 mL)
1

. The resulting squared diffeAnce between and P..11 divided by four is

a conservative estimate (ovetecitimate) of the variance contribution from

strata h And -2. When an odd number of singleton PSUs was available within

a major region,. by SOC stratum, the last three singletons were used to form

three pseudo strata, each comprising one of the possible pairings among the

three units The variance contribution from threesinR4etons was estimated
. .

s. by adding the three squared differences divided by eight. The division by

eight results from_the fact that each of the three PSUs is accounted for

in two of the squared differences.

. An alternative stratum size adjustmint, which requires no knowledge

of the separate stratum sizes, N
h'

uses the estimated student population

fromtlq singletonietiata in'the adjustment. Assuming that the PSUs in

the two coj.lapsed strata all contain approximately the same number of students,

say R, then the sum of weights for a singleton strata-h estimates

0 s
.N

h , - i

6.36)s mb N
-

- N H
%i=1

ihnh
. .

. .

When the h:th stratum is discerded insthe replicate P-Value estimation, its

contribution to the numerator is replaced by its estimated population sires

(:ht) times the estimated proportion correct from stratum-2; that is

31 at'
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i
.

. 4°`

.
A A A A

,Yh Mh.(YI/Mt). (2.37)-"-

=

No change is made to, the denomiiator with thid adjustment. Such fn adjust- 4

went fOrCea an equality of PSU sizes which is nit achieved for two legitimate

selections from the same stratum, and_therefore would seeeto upderestimAe

the variance in tits respect. As long as collapsing is not extensive, the

differential effect of the two alternatives is probably negligible.

. Aside from the problems surrounding stratum collapsing, the application

df the jackknife technique to Nation Assessment data was straightforward.
. . __

In, one pass through the data tape, ums of weights for correctrespotses and

total s4ms of weights were computed within each PSU for a specified cross44r

clasgificatitin of subpopuiations. Consider for example, the cross-classifi-.
, . N

4 cation of Region, STOC, Sex, Color,'and Parents' Education,
$1

yielding a five
1

dimentional table (4 x 7 x 2 x 3 x 4), each cell of which get esum of
. . A . A

. weights correct !hi (r, s, t, us v) and a total sum of weights 24111 (rstuv) -

for each PSU (hi). An of the P-Values, AZ Values, and their variance
. ,

estimators can be easily computed from sums and differences of these stored,.
,

,.. quantities. The balanced effects are functions ofione- and two-way marginal

sums from the M and Y tables. The variances and &variances of the Bs are
$ .

I
formed from within-stratum.PSU differences among these one- and two-way-. .

marginal totals. "1

$ ,,
4W While the jackknife replication procedure was first introduced by

*

.
Qutnouille [ref. 1],as a technique for reducing sampling bias in nonlinear

t. statistics, this featurg is probably not of primary importance in large-
.

pamples such as National Assessment, since combined -ratio type estimators
1

like NAEP's P- Values, AP-Values, and Balanced Effects should be relatively

free .of sampling,biaa.1 Some empirical justification, for this oontention
. .

can be gained by con sting the jackknifed versions of these statistics .

-

with the original estimates. For most of NAEP's reported.statistics, these

differencet-Ar.t negligible. For use reasons, National AssessMent reports

unjackkmifed statistics along with the associated jackknife variance
. , . . ill

/
.

- estimator. .

. 4
/1'

....-...-

. In the following section a summary analysis of Year 01 sampling errors

is.. presented. These results are extracted from a paper by Chromy, Moore,

\.

ft 35
32

-.

o';



and Clemmer [ref. 61 ,The res lts are presented in terms of design effects

or the 4Cio of NAEP liariance'e Cps to simple random sampling variances.

Summon* Analysis of Year 01 SaM151ing Errors' .4

NatiOnal design effects were estimated liu Chrow et al. for 149 science
.4', e4

ancywriting/P-values. The median design effect estimate for tne 149 exercises .

. .

examined was 2.38, with the majority falling between 1.50 and 3.00. Table

2-1 shows that 82 perdent were 3,50 or less, and 94 percent were 4.00. or

less. Table 2-2 presents median national design effects and ranges in

national design effects for various subgroups of exercises classified by
. ,

. age group, administration mode, and subject matter area. -

Design effects for grodp-administered exercises were ighAhaMApse

)
.

for individually administered exercises due to more cluste ing of the sample

respondents. Each gioup package was administered once in each PSU to

Troup of 12 students selected from a single school .4 For individual packages,

the 9 respondents.selected from each PSU were spread across several schools.

The estimated design effects for 13-year-olds were smaller than those

for 9-year-olds, while the 17-year-old exercise effdcts were smaller than

),those for either 9YOr 13\-year-olds. A plaUsib 1.61anation for such a

trend is that high schools are more hetkrogeneo s in terms of kudents than

are junior high, schools, and junior high schoolsare more heterogeneous th-an

the elementary schools. #
/

4edian,design effects for size of community (SOC).sOpopulations

,doe .defined by poststratification are shown in table 2-3. As with national

jesign effects, the median effects for SOC subpopulations .are higher for

grou"s p-administered exercises than,for individually administered exercises.
.

.* . .

There is possibly a tendency for metropolitan and urban area median design
. . 1.

effects to be smaller than those for more sparsely populated medium cit:

and rural (small place) subpopulations. 4

Thedesign effects discussed in'the dhromy'paper reflect the combined

effects of clustering of the sdmple, nnevinal meighting -01;samplem res-p-ondents,--

stratification, and other sample design and esfiaatio factors. The effect

of unequal weighting of sample respondents was esttmatea to be from 1.3 to
4

1.6, depending upon the exercise.

.m91.01.

N

, .
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Table 2-1. Distribution of national design effects

Design Effect Number Pert

I

< 1.00

1.00-- 1.50

1.51 - 2.00

2.01 - 2.50

2.51 - 3.00

3.01 - 3.50

3.51 - 4.00

4.01 - 4.50

4.51 -:5.00

> 5.00
Total

5

41;

1

1

`16

29

43

32

8

5

3

2

1%

11% .-

19%

30%

21%

5%

7Z .

3%

2%

1%

ti

149 100%

Table 2-2. Median design effects for national Pwalue estimates_

,

.

Administration Subject

, ,-

Number of,

_._

Median Range of

_

Mean
Mode- Area Eiercises Design Design Number of

Age Effects Effects gespondent

9 Group Science 30 2.68 *1.92-4.94

13 Group Science 27 2.26 1.31-6.01
17 Group Science 10 1.81 .90-2.51

17 Individual
26 to oc4.1.0

,,Science _1 1.13

Indi dual 'Science 16 2.57 1.38-4.08

9 Group Writing 24 2.81 1.51-3.80

13 Group Writing 5 4.36 _L1.93-10.88

9 Individual Writing 1340 2.21 1.4$ -2.68

13 Individual Writing '23 1.89,e-/ 1.24-2.88

34

37

2,442'
2,415_

579

878

2,426 ;

2,416 -

1,817
1,863



.

Table 273. Median design effects fOr size of community (SOC)

subpopulation P-value estimates

.5

Age f
Administration

Mode ,,'

j.....-.

.
Subject
Area

4umber of
'Exercises

,

Median Design Effects
for SOC Catezories

Big City
Urban
Fringe

Medium
City

16

Small
Plade

9 . Science 30 2.26 2.01 2.56 3.58
'13 Group Science 27 2.43 2.20 2.14 1.90

26 to .

35 Individual , Science 16
,

1.91 2.25 1.47 1.86 .

-=_

Group Writing 24 2.04 2.18 2.41 2.86
13 Group Writing 5 3,79 2.95 3.82 3.69

9 Individual Writing . 13 * 1,75 1.97 2.66 1.91
13 Individual Writing '23 1,22 1.37 1.75 2.38

4

-
Design effects for adults 26 to 35 years of age were about equal to

those for 9-year-olds, possibly reflecting a similar intracluster correlation

for the household sample due* small, compact clusters and variable housing

patterns within Pa1s.

No apparent difference was observed between design effects for science

and Ating exercises, This comparison is tenuous because of the smal

' number of group-administered writing, exercises and the fact that n

ually administered science exercises were examined in the Chrony udy.

Tables 23, 2-4, and 2-5 present.wedian design effects for su populations

defined by regional strata., and for sex and size of community subpopulations

defined bY'poststratification. 'Median design effecti for subpopulation

estimates are of about the sane magnitude or slightly smaller than the

median effects for national estimates.

/
The largest median design effects for 9- and 13year-old writing

exercises seem to occur in the Southeast regibn (table 2-3).
ii

No consistent trend was noted among.the median design effects for

1/males and 'females (set table, 2-4).

328
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Table 2-4. Median abign effects for regional subpopulation 12-value estimates

4.4

4

4 ,

(0- and 11-year-olds only)
1

$

Age
Administration

Mode
Subject
Area

.9 Group 'Writing
*13 Grolp Writing

9 Individual Writing
13 Individual .Writing

N
Exercise

24

13

23

Median Design Effects by Region

Northeast Southeast Central West

1.89 2.93 2.32 , 2.65
3.05 3.65 3.50 2.65

2.34 1.30 1.85 2.17
1.64 2.11 1.61 1.35

Table 2-5. Median design effects,for sex subpopulation P-value;, estimates

Administration
4211

,13

26 to

35

9

13

9'"
13

Mode
Subject Number of
Area , Exercises

Median Design Effects by Sex.

Males Females

Group ,

Individual

Group
Group

Individual
Individual

Science 20

1

Science 15

.

Writing-. 24

Writing 5

.Writing 13

Writing. 23

-.

2.57

,...
2.08

2.74
2.95

/.27
1.80

2.25

.

2.20

2.54
4.38

2.03
1.84

1

V d

. .

Some major revisions in the National Assessment sample design occurred
,

A. _

in Year 02. The first principal change involved doulg....ing the within4SU

sample size and halving number of primary units. The planned number of
. , ,

administrations per individual package was increased to 20 ptr PO. ,
, .

The second major change involved the use of controlled selection of

the primary sample to permit Stratification by State as yell as by the
.

previously discussed set of stratification variables. The implications of

thist second change for variance estimation in Year 02 are explored in the

next two chapters.

, 36.- 39
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ChapteA
CONTROLLED SELECT/ON: IMPLICATIOOS RIR YEAR 02 VAIANCES

K K

.

r
Introduction to Controlled Selection

1
.COntrollad selection can be viewed aq..a pigability proportional to

'pt.

.

.--

size (PPS), w.ithou epl cement' sampling scheme Din selecting primary,
;

subjectsampling unites SUs) subject to Controls beyond what is possible with '. t 1.
.

stratified random samplit Stratified. random samples, where the sample'
t

sizes in the various stra a are required to be proportional to corre-

-10

._

.

sponding'strata sizes, are generally more efficient, than purely random
tk- -

,
samples.. The effectiveness of such stratification is increases as theA..

4.
.?'-'number of strata increases. To take full advantage of the potential gait'.

from stratification and to guarantee representation for various subpopu .

.., lations (domains) of interest, Goon and Kish (ref. 1] deyeloped con-,
4.

trolled selectien as a means of allocating primary units to strata pzo- .
1.

K

portional to size when the number of units was smaller than the numberI ... - , . .
.

.1
,

-of substrata generated. .lessen tref.,21 in his recent paper.on "PrOba- .

bility Sampling wip narginal Constraints" presents, arty algorithm for
. .

..r -,
.

selecting primary units wiah Atratification.in,several directiolig.-----
, ,

...: Hess and Srikantan tref. 3) considered controlled selection designsv -

,

withequal probability selection of PSUs within control cells (cells of
, . .

the po-way, stratification array).. Tr:A, Monte Carlo sampling experiment
1

_AtheY cot pared variance approximations for an estimated ratio using the
.

***p6thoos of successive differences, paired differences, and balanced half

e

.

samplegil It was found that these apprd4mationt substintislly 6vet-.

*'4.
estimated variance box. three of the four statistics studied.

. . .
'The 'results presented in. the following sections relate to variance

.estimation fo4 ti design utiAzing a controllea selection algorithm to
. - 1construct-allqcaAon' patterns. Aftet one of-these patterns is chosen,

,..

.4*

the reqiiire(number.of first-stage units is selected from each control

.

cell with PPS and without replacement. The general population structurelle,
..

and sample design are presented iN,the following section: Sectiqn 3

.-develops:the fimilila - .Horvitz - Thompson [tel. 4] type estimator,for.a.
.populatioe" to'tal and derives an analytic expression for the variance

..--

Sect
...

of such a lineal, statistic. on 4 g/.ves conditiobs on the set of
. . . ...

1. 0

0

4

5

4

0



allocation patterns and the subsequent

vide for unbiased variance estimation.

(Y-G} [ref. 5] type variance estimator

PSU selection scheme, which pro -

The appropriate Yates-Grundy

is shown to be unbiased when the
_/ '

*aforementioned conditions are met. Chapter 4 describes a computer simu-

lation model used to genetjte data for a'monte Carlo sampling experiment

patterned after the Research Triangle Institute's shrvey design for Year

02 of Natioial Assailant. Three variance approximitionsare proposed

in chapter 4 as alternatives to the (Y-4) estimator. Empirical results
of thethe Monte Carlo study are presented. The bias, mean'square etror,

and distributional propeities of fouF alternatibe variance estimators

for a ratio statistic are studied..

General Population Structure and the Sample_Desiga
'

Consider a population of first" tege listing units, which have been

stratified 'in two directions. If r a 41)R and c 1(1)C denote levels

of.the row and column TtsasOication variables, then Nrc will represent

-the number of listing units in cell (rc) of this two -way stratification

array. Let Yrck be a characteristics of interest possessed by the k-th

lisingunit in cell (rc). Suppose that X.
ck

is a size measure for list-... r
g unit that

insg

rick for

e

dim-correlation with the unknoWnvariable of interest Y
rcg'

The rela-

tive size of cell (rc) .is, therefore,

4 A a (X /X )rc rc+ +++ '
, -

AP

,(3.1)

t

where a "plus" replacing a subscript indicates summation over the levaise.

of that subscript. An allocation strictly proportional to X of; primary ,4

sampling units(PSUsi to the liocellstof our two -wad array would yield a
fractional sample size a nAr'c for "control cellq(rc).,. LC

Various' algorithms; which will be collectively referred to as con-
- trolled selection schemes, yield-samples with an expected allocation of
ESUs to

t
1.1yestrictly proportional,to their measures of site., :these

algorit h produce a set of S allocation patterns with the s-tkpaktern
.... consisting of a set of integer allodations Gn(s); for r a 1(1)R and

,

rc

c a 1(1)0. Bich of the S patterns is a
t
selection probability'(a

s

40 4 .



4.

assigned to it, such that the e4pected sample size for any cell over all

patterns-is

111 a h(s) me E nA
rc

,

r
s rc

)

(3.2)'

the strictly proportional'allocation. Additional cell and marginal con-,.

imposed upoh the allocation patterns; for example,

n(s) are required to satisfy the following sets of,
rc

straints are usually

the cell allocations

inequalities(

I n(s) - nic 1 < 14 (3.3a)
rd

0 4

1 n(s) n
-1-c

I ,< 1,
I

+C

1 n(s) 1 < 1.

\
These inequalities reqdire that the integer illocations'to cells, column

--. \ -,
`-' margins, and row margins deviate from the strictly proportional alloca-

0 .

tions by, less than one PS1U.

We will consider samples with n(s) primary sampling units selected
rc

without replacement and with probabilities strictly proportional' to size.

That is, if the s-th pattern is chosen, then n(s) PSUs are selected from
rc

control cell (rc) with probaioilities,

r(s) n(s) (IrcktXrc+).! n(s) Ardk'rck rc rc
(3:4)

and without replacement. The unconditional probability over all patterns

for selecting first -stage listing unit irck) is, therefore,

(S
s

v
rck

= i a n<s) = r d n(s).A
rck

n
rc

A
rck

.

%
(3.5)

.- sg4
s

rck s =1 rc
,

. , . .

With Yrck denoting.the variate value40fointeresassociated w4.11 listingv

Snit {rck), we will be concerned with estimation for the population total
e -

iiR C
Nre

.

Y =A E 7^ T. t Y . . (3.6a)444 -
-rck

iml, CN.1.1m.1._

-*
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Estimation Theory ,
.

...

The following orvititThompson estimator for the population total
4 f (Y) will be consid edirkiubsequent 'sections,'

r
V

. a
. n(s),

. R C' re ..
Y = E z ,Z Y1' iv (3.7a)rek rck

F=1 c=1 k=1 4.
t

4

.

.
Notice that the summation in k is oyez those 11,(s) (pojsibly zero) listing

,
r'e.

/
units selecte

..

ram cell (rt). The " over variate value Y
re

indicates

an estimate'based on subsequent stages of sampling. Recall that
Trek is

the unconditional probability of selecting the listing unit (rek) as '

defined iniequation (3.5). ..

In part of the discussion that follows, it will be convenie0 to use
a single subscript say 2 * 1(1)L, to:index-the two-way array of control

cells. 'This allows one to"wtite

f ',*.;* *

I 41
A

6; E.0 .

I 1 kiel

in place of equation (3.6a) sad,.
.

*
f.

-: 4n(s)

.,.
-0,,.. 2. ...

.

... E E 4

41Z,10 3. )CO3. YLki7iit'
/ ' '

t ... t 0 tri. ' t e ,

, %in'plact'of eql!sy.on (3.7ar.,

I
Assuming, that the withili-PSU stlgegi of sampling lead

of the PSU totals, it-ls easy to show that Y is unbiased ." Notice first

ti

--2

x I

(3.6b)

(3.7b)

to unbiased estimates

that Y can be
.

rewritten as,
.

Y-= t n(s) Yo/no,
L=1 L "

where
:-

... .
'r

.

-. . n(s)
r0 7 ^ 2. A:

o
0 YL = E Y in(s)

. It.' ,.......

.

.

r

"--1
.-- r.a- -=.11

11$

44
42

(3.7c)
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Is the unbiased Horvitz-Thompson estimator for the c

NA

Y, = ,Z Taking. the conditional e*pectatio of Y given the
k=1 "

total

allOcations n(s) from pattern (s) we find,

. 1
.

.1 ip

L
E(YIn(s)) E n(s) YLinc

k=1

44'3

(3.8)

S -,

Recalling the definition of n = E a n(s) a (n(s)), one sees that
sic1 s. z

s Z

Y is indeed unbiased.

To derive the variance

useful:

\\/

The first tern in equation (3.9) is Var{ E n(s)Y/nd from equation (3.7).
2.=1

or

Therifore,,

of Y, the following partitioning will

Var(Y)= Ver[E(Y(nz(s))] E(Va(i(nz(s))].

. L

be

(3.9)

^ 100 L
/

.

,..

.
Var[E(Yln2(s)1] = E Var(n(s) : Y

2
/n

2

2
+

2.=1 R. 2.

Letting

1

L ! .

E E Cev(n(s) , «n(s)) YtYL,/fiez, .

£.51 £

S

E(n(s) n(s)) E E a'n(s) n(s) E nzz;
2 .2,t S1 s

t2

L L
and recalling that E n(s) = E n

z
= n, weafind that

2=1 2. 2=1

Cov{n(s), n(s)1 =.
'ml 2.1

(n - n,n.4 ,) = -Var(n(s)) . (3.111-

I

43-
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4.A
r . . ._

The result in equation (3.11) allows out to write the betWeen -control -cell

g

contribution to equation (3.9) in a form reminiscent of the familiar Yetis-
.

.Grundy variance expression; namely,

2

Var[E(Yln6))) E E (n n - n )....: '=.'' - -:=--"t

Als;f.r1.1., / /T LI.' : 742 1!2'

Y. Y.L-1 L .

The variance form in equation',K3.121511:hows clearly that the between-cell.

source oevariation in ,Y is ririllieved when nt (the exp ted sample size'
.

for
r
cellt-Pid strictly .proportionai. to Y (the cell total).

L
, .

.
. Returning to the second term in our partitioning f Var(Y),.equation

.
.

(3.12)

(3.9) we see that;

ti

Var(tIn(s)) E (n(s)/n0)
2
Var(Y .3tIn(s)) . 3.13)

I 1441 L

This result is an immediate consequence of equation (3.8), and t#ze fact

that PSUs from a particular control cell, (2), are selected independently

of those'from any other ce11,11.'). If w(s) denotes the joint inclusion

probability for listing

selected, then

A

tkle

units and. k' from cell (1) when n(s) PSUs are

//
, /

N -2 N
Y

2z
Var(Yln(s)) E {n(s) /n )2 E E '{w(s)w(s)-7(s) ) tk Lie

L 21 t L k=1 k'44k+1 Lk 2k' 2kk' .4(13) 7(8)
Lk, tk'% . , ..._

. f
N

iE (no(8)/no)
2

E a
2

k
/w(s).

t
1441 k441 kk

where atk denotes the conditional variance of the estimated PSU total
.

.
A

,

Y
Zk given that listing unit (2k) belongs to the first-stage sample.-

. . 0

Since.the conditional inclusion probability n(s) 44 (n(s)/nz)wlk where ,
Lk 2

I
Lk is the corresponding unconditional inclUbion probability, one can

recast equation (3.14) as
III II.

V
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4

.

.

.") Var{y;n(s)}

J

4

Letting .

2181 kal leak+1 2k 2kI licks

L 1;2-1 N
21 1Y212
'Zk.4-17.21e

2,
v

in(1)/n) 2 c
2

k
/I .

l
2,a1 kal

lk .

..4

E
s

fl(g) } E E 7(s) =:

.kk' sal 8 211' . 1ck

-

.

41

:kr

(3.15)

4

1

denote the unconditional joint inclusion probability for listing units k

and k' from control cell (2) and defining

RV E Rel-Var (n(s)) w Var{p(s)} /nz
2

2, 2. A.

-
the of equation (3.15) becomes

.

.E4Varl!:In(s))1 21
v,

E Z I f(RV2-1-1)-r2,41zk1-naksi 77--

L---- . Y21 -21'

L N2-1 Nz .

A 4 2a1 kal k'ak-1-1 '21 72k'

,
..

N
a
2k Zec

. (3.16)

2a1 kal

Finally, combining the results in equations (3.12) and' (3.16), we can specify

the variance of Y as follows:
Ssl

2
. L-1 L Y, Yi

-Var<Y) a Z Z (n n.1-n )

gal'I'a2.41 2 4 221 n2.
nAl

a
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L
N -1 N

tieY Y
2

+ E r E ((RV.+1)zol, rou
11.1k;a1 Mik+I " 4". kk I

-N
L

+ E E c2alsrfk .(3.17) c

though the expression in equation (3.17) neatl tions the variance

of Y int components due to between-cell, between- SU-within- 11, and

within-PSU variability, a more compact form, which cabbines the first two

terms above, provides more !insight into 'how this variance night be esti-

mated. `If it , the.unconditional probability that PSU (k)
Lk;ZIk

of cell (I) and PSU (k') of_ce.13. (Lt) both belong to the sample where

iii then .

--

is/1;1,k, E sr (s) r (a) ,
.

ik

it
4

S

s. 6E a n(s) n(s) A,k,Av.
814 sl m.

nu, ALk ALik, . (3.18)

I
Having defined this between-cell joint inclusion probability, one can view

the first two stages of sampling (patterns and PS.Us given the patterq) as

a without-replacement selection of n t Z n2, PSUs with %/arying. inclusion

11.3. I

probabilities w and` with joint inclusion problilities IT ,_t I where,

,

LIC

/ RV

This leads one,5o the variance expression.

121;ttkt

sr if

n
1.11. 'Lk

A
l'k

if 1.112'

r

/

(3.19 )
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I

vi

t.

2
. L "Z.

1

, a Z'k'
Var(Y) i 1/2 T F. Z (- - _- ) ---- _ ______

Lk Z'k' ZkW10 -;a -=

L
,

k
,

Zml kiwi (i'le)i(ZIO,

T
L az . ,

+ E E 'er IT

. ....

Zk Lk (3.20).

x -1 ki21 -
i w

.

Using :the definition in equation f3.19), it is.not difficult to show
.7 .

that the first tern in equition (3.20) expands into the between-cell and

between -PSU-within -cell contributions of equation (3:17). In the following

4 section, the familiar Yates-Grundy valiance form inieuation.(3.20.) will
.

lie exploited to produce an estimator for Var(Y).

Variance Estimation ' -
,--

.,- a
if an unbialfe-d esrizate-,

5427 '''Z2k'
of -the ',..fithip-PSU gariance is

availablifrom each sampled PSU, then,

n(s)
2

YL Z r
Var (Y) 1/2

Z.B1 (2,11e)#(Zk) "Lk,Zek' Zk 'Z'k'

21Vki "Zic:Zik') /k l'k'
r

0
n(s)*

L Z
"2
c /7

2k
1=1 keel

(3.21)

is an unbiased estimator for Var(Y) when - > 0 f.lor 14pairs
Zk;ZIk'

CElk; Ifk') of listing units in the frame. This last condition requires

that each pair of listing units in th% frame has a chance of being is

the sample and is,the downfall of most controlled - selection designs when

it comes to variance-estimation. To satisfy this condition, the set of

allocation patterns 'must be such that:

1 n
ZZ'

> 0 for all Pairs- of nonempty cells (22.') in the

two-way stratification array. This implies thaiach pair

bf control calls is represented im at least one of the

allocation' patterns.

47
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4

. s
2. If N

I.
(the number of listing units in cell t) exceeds one, then

. .
... . ,

we require that Pr(n(s) > 2) > O. That is, if a cell contains

two or mute listing units, then at least one pattern must assign

two PSUs to the cell. '
t

.
Meeir ting the first of these two conditions presents no major difficult,.

Algorithms like Jessents-4rref. 3) "Methe3" generate an enlarged set of

allocation patterns, which_satisfy the inequality constraints in equayion

(3.1) and at the same time' give-all pairs of naaempty cells a positive
_ .

.

probability of being in the sample. The second requirement for unbiased/-
. . a

variance estimation-is more severe, since it runs contrary to the basic

advantage of controlled selection designs; that is, having more control

cells than PSUs. If a cell expected allocation nt is less4han one,

although it contains two or more listing gnis:01-> 2), then the cell
_

ihetualat.tr_j_A(s)_-_,si_Lettiation (3.1) 'does not allow n(s) to be two
I. I.

- or more. One way of solving' this p;oblemwoule.to restrict our atten-

tion to designs with nay? 1 for all dells with NI L20but this would elimi-

nate most of the situations where control beyond stratification is desired.
:

A More acceptable solution allows some fiatterns,with n(s) 2 when nt < 1. I

Although thethe cell inequality is violated for cells with expected alloca-

tions less than 1, our experienc dicates that it should stall be possible

to satisfy the marginal constrainty, as long. as the expec ed marginal

allocations exceed two PSUs. .. ,

. ,

When some of thipairs'ak;t10) of lisirk units have no chance of
. .

appearing in the sample, the estsdator in equation (3.21) will underestimate
.

e true ;variance by an caoun,

r

7

2

TEk4/ isTzikr : °£k °£'k'
E / tiL + (3.22)

(tk;t110) . 1k a Lk xik'
r

7 .

:c.

..4
. where 4 denotes Summation over those pairs of listing units

(tk;t110) . .

(`Rk;t10) such that w mg O. The portion of this downward bias duetkClkI7

to singleton cells (cells with N > 2 but Pr(n(s) > 2) - 0) &An be expressed
R.

as' . % ' 1

48 50;
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. - 2
N, tY N,

(S)
Z A

v r(s) -r )a2 /r (3.23)
z

2k
2k

"2
2 k:1 1"ki:

wn ere E (s) represents summation over all singleton cells. That part'of
2,

equation (3.22) due fo pairsof cells having no chance of being in the sample

is, p

N N 2
Z 2' Y Y A

K
..0
L nn E EAA _ill Z'k4 ,c5 '''' 2

(LX) Z 1' ki.1 keial
ik 210 72,k -,..-

k
+

.41 1 (2
L
21)

n
l'

t a
Zic

/7
Zic

km1
,

MN.

N.,

+ n2 0..110/72'kl
k's41

(3.24)

where . denotes summation over those pairs of control cells with no

(2.11)
Nance of bei4 in-the sample. As suggested earlier,' this source of bias

av
can be eliminated by adopting .an algorithm like Jesson's "Method 3," which

guarantees that all nonempty pairs of cells have a dhance of appearing in

the sample. '

§

The underestimation that occurs as a result osingleton cells, equation

(3.23), can be compensated for by a procedure-analogous to collapsing strata

When a sing le PSU is selected per stratum. One such "Collapsing sohem#,

involving successive differences, takes the following form:

m(s)

C c 2

E £ ) ,

t% c-1
tc tc1 t+1,c t+1;c1

mf.

with m(s) + 1 E 1 ,

C

(3.25)

where t 10.)m(s) indexes the singleton cells from column '(c) represented , '

in pattern (s), and 7
tcl (Ytcl

) denotes the expanded PSC total from

singleton cell (to). This scheme presumes tat the Column classification

reprpsents the more important stratification dimension* and that tne ro.

1,

.` 49
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categories can be arranged in atircular array with adjacent categories

assupied to be more alike than nonadjacent categorids. Adding this term

to equation (3.21) and assuming for the moment that nu, > 0 for all'paira of

cells, the bias becomes,

m(s)
2 ' NI

'44-7---

c Y
tcl Yt+1 cl

S cal t l
/2 + E

(s)
E (3.26) %

k=1
.

,

c2/k

tcl. t
7
+1,c1

Z

.

The withilt-PSU bias remain4Sg in equation 3.26 can be eliminated by sub-

C

t

n(s)
Z .

2E(s) E
Zk '

k=1
(3.27)

. ..

from'equatiae (3.21). If E
(;)

denotes summatipn over nonsingleton cells, then

F 9...

equation (3.21) becomes with the bias adjustments in equations (3.25) and (3.27),
e .

s

I

4'

var(Y)-.. = w__ tide - 2,11

aaj 2.k. k YZ'k'"

m(s)
I C c

tc tcl %t+1,c t+1,c1
)2/2 (3:28)

c.1 e.1

n(s)
-

+ E
(s)

E
Z

2

k
in

'
£

where w
kko.'10 represedts the Yates-Grundy "variance weight" in eqdration (3.21)

and ya is the expanded PSU (Lk) total.. The bias-adjusted estimator in

equation (3.2Q) overestimates the true variance of Y by the first term of
. e

equation (3.26). If someakkirs of cells have no chance of being. in the sample,

then the quantity in equation (3.24) makes a negative contribution to the bias

of equation (3.28).
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Finally, if the-within PSil_variatj.on is not estimable, as whetkqnly

one second stage unit is selected per PSI!, an additional negative bias is

incurred; namely

(3.1 N2,

Z` Z

kia
(3.29)

-
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Chapter 4: SIMULATION STUDY OF ALTERNATIVE YEAR 02
VARIANCE- ESTIMATORS

Simulation Model

In the following section,, the design of a Monte Carlo sampling experi-4

ment is presented. IScieled after the Research Triangle Institute 's (RTI4s) 4.

sample design for Year 02 of Olional Assessment, 1,000 samples of 31 ?SUS

(cou5ties or groups of counties) were selected froi the twd-way state by -,'

"major strata" grid shown in 301e 4-1. Table 4-1 shows the expectedJSU

-allocations
-

(n
rc
) and numberAt first-stage units in the frame (N

rc
) for

the 15 States comprising NAEP's western region. The seven major strata

repr esent a combination of size of commdnity and socioeconomic status

categories.

In order to distrAbute the ,ample '#roportionally across the major

strata and at the same time guarantee that each State would be represented

by at least one PSU (a NAEP requirement), controlled selection was used

to generate 33 PSU allocation patterns that met these requirements. The

33 pattern probabilities for our design were converted into integer allo-

cations by multiplying each by 1,000. In this fashion, the number of times

a pattern was represented in the 1,000 samples was made strictly proportional

to its selection probability. For each' of the 221 first -stage listinglunits

in the Vest, an estiqate.of its populati-c of 17 -year -olds was produced

using 1960 census projections. These estimates were used as size measures

in connection with a PPS without replacement scheme to select PSUs from the

cells of table 4-1. :*/

,

A data vector consisting of the actual number of 17-year-olds and the

,...

number responding, correctly pi several NAEP test exercises was generated

for each of our 221 first-stage listing units. Th s data set was based7on

1970 census figures for cumbers of 17- year -olds an on estimated y-values

(proportions correct) by State and major stratum margins fdr the selected

NAE P exercises. To*proddte P-yaluel consistent with:actual census

totals and the observed. State and-SOC marginal P-values for pelected,AEP

rear 02 exercises, an iterative proportionaa fitting technique was employed

[ref. 13. These fitted cell.P-values were used along with.tne listing unit
' s.
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,
4 totals-to product-a variate value Y corresponding t& the number

lk
or.

,
,..

rck ..-

, - correct responses from listing unit (rck).

The following model was used to generate a new value for Xrck each .,"

time listing (rck) apptared in one of our.replicated samples:' -

Y
rek

m p
rek

M
rek

e
rek

(4.1)

where the errors erck for different listing units (k) from control cell

(re) are uncorrelated with zero expectation and variance

2 1 2 g
( 1 .= . (4.2) ::
erek Mrck). are lirck

Mod& similar to equation (4.1) have been used by 3. Durbin (ref. 2],

3. N. K. Rao (ref. 3)., and nuMerous others to study the properties of ratio

estimators for P . We will restrict our attention to models with g=1 ant.
re

2 ,

proceed to motivate a particular, choice for the value of arc. Our method
rc

of choosing a value for a_2__ will be to propose a plausable model for the .

. .

. ...

.sampling variance of the estimated cell P-value P and then find a value
1 A rc

1
of a- consistent with such a model.

re ,
.

. Suppose for the moment that listing units were selected with replace-

ment and with proba lities s;zietly proportional to known sizes
Mrck.

Then

* , .

the unbiased estima r

with

has variance

n (s)
' rce ,

Pre
E

P rek 1 arc(s).
-__k=1 .

_

Prck

Var (P ) = B2 /In (s)
s rc rc re

. 55 57'

(4 . 3)
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t

. where,
-

. . ..
... , . .

..,
N-

.

rc . ... .
$ E.2. ..4A If., ,i, 2/ .

re rck ` rck re re+
km4

. .

If,- in addition, we 'define

4
Nrc'

E
2
(rt)k E kr Pc rck (1-Pirck) /lire+M% '(4.5)

as the within-listing unit variance coMponent, *then. it is easy to see that

2 2Ere E(x.c)k P= (1-Prc) .

Noci, we define

or
arc

2 ifEl
rc rc E(rc)k)

is* E2 I P )arc rc rc TC
w

f

as the within-listing unit correlation coefficient. These definitions
allow us to write

Vars re ) Prc (1-P ) 6rc pc (s) ;,r

(4.6)

(4.7a)

(4.7b)

' (4.8)

With the variance formula ip 4.8 representing a plowable model for
the b etween - listing unit varlatioilin ire the estimated pro portion correct
from cell (rc), our goal is to specify a value Eor arc in the data genera-
tion model equation (4,) such that the average sampling variance of the ,

-ratio estimator,

58
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Fith

and
4.

A

P - y
re tre+i Mre+)

2rc+ zr
k
,i;

Yrek ilTrek(s)
es

A

kes
r

Tr
eki rc

Jr

i s approximately equal to equation

Yrck. we note that

t

neealling the form of our model for

Y P M + e
re+ rc rc+ re+
or

`1,

Since f(erckl *trek) It 0, it is clear that

E Fars (Yrc:r) z P2
rc

Var
s

(cf
rc+

)+ e
Vars(erc+)6

,--- /
and

A
C Coy (2' ) = P'liar (iI).

s re+ ref re s rc+

(4.10)

(4.11a)

(4.11b)

Using these two results and the Taylor series approximation foT the variance
"

o f a ratio;- namely,

.

t Var
s

(13
re

)%0 11-re+ E. V ar
s rc+

)- + P2 V ar
s re+

(4.12)
re

we find that

-2P
rc

cCov (Y i2
s re+' re+

)1
^s

ISM 4

e Var (13
re

) c Var
s

(e
ror

,)

A

ffre+

^o

sr,

57
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.0. a V

NoW we can evaluate the expressiftin equation (4.13) ip terms of the data

ti
generation model equation (4.1) ands compare the results to our variance

Rodel in equation (4.-8). First we recall the Yates-Grundy version of
14

#

Irars
(erCd;

'that is,

Nrc
Var

s
(e
rc+
)0 Z 4E4u

rck
(s)

rck
..(s)\su

rad(
kal k'Ok

'2

1

:rck.. erck'' 2
a
rck

.(sd.
rck(

= I> e. so '
Using the independence of trot And Crch acing with the result that

.

E { fl (s) u (s) - u .(s) (ON(
y-

(s)1,rck rck' rckk- rtk lurckk'Ok

we have

N
rc

E Vars (2rc+La
E (1-u, ,(0)6(e2rCK rCk I Mr;k) / rCk(S)

.

(4.14)

(4.16)

Recalling our specification of the error modellin eqtation (4.1), we have

assumed that with gal ti
.

E (e` " 2 t

rck
1M
rck

o 14
rt rck

.. (4.17)

With the additional assumption that thesize measures' Arck entering into .

the inclusion probabilities' urck(s) are toughly proportional to actual

listing unit totals M ( ti
rokrck .

or (arc Arch where
rc

represents the ratio

14
rc+

/ Arc), the average variance expression in equation (4.16) reduces to
AO

. E Vars (ere+) [1-n
rc
(s)IN

rc
3 N

rc
M
rc+ r

o2
c
In

rc
(s) (4.18)

60
58



f v

114a.

From equation 4.13 w have

C Vdr (P ) 4 [1-n (s)/ N e2 (s) M
" s rc re) rc rc re rc

i!

(4.19)

Recognizing the term in parentheses Above as the finite population-

correction term from a simple random. sample and recalling our variance
N7s.,

models in equations (4.4) air d 44.8), we are lead to

a2 = M E2 = M P (1 -P ) 6
rc rc. rc rc. rc rc rc

A

rc.
where M *M /N. This value of c2 yields the following approximate

re+ , rc , rc

.
.

expression forgthe avera2e of P :

.I. :-...t 4 r4;2.

'
(P

) 4 (1-f (s)]E / n (s)

,

F rc re rc

IP It if
I

e V ..

4= (1-f )
c:

n (s)
rc rc c rc

(4.20)

'-(4.21)

with frc(s) denoting tie sampling raction for Cell (rc) in pattern (4
4

A variance components analys of NAEP Year 01 in-school data suggests

an average value for the within-lis ing unit correlation coefficient erc

of around .015. Substituting this lue for 6
rc

into our expression for

arc, we have arrived at the followi computer simulation model for the
r

number of correct responses from listing unit (rck):

Y
tck

= 2 rc M
rck

+
rck

where g is a standard normal error and

drck arc rck 'rc. Prc (1-Prc
S

x .015 Mrck.

(4.22)

(4 . 23)

-

rr .

,



To further assure that Trek is an acceptable estimate of the number of

correct

Co.
Mrckle

responses from listing unit rck, we have required that

Yrcke l This was accomplished by censoring values of g, which

cause
rck

to exceed these limits. In order to preserve the symmetry of

our error distribution,, which assures that e (Y
rck

1M
rck

) = P
rc

M
rck'

we

have censored values of g ita symmetric fashion. lbexrules for rejecting

g are, therefore:

1. For P > .5:
LC

Reject g if Igl>(1-Pre) Mr41 dra

2. For P < .5:
LC

Reject g if E
I-I>Prc Mrck I drck

/. Only for values of P clone to 0 oe l will. any censoring be iequired. 40,
rc

If, for example, we make the simplifying assumption that M
rck

1 M for
rc.

all k, then with P
rc

= .95 or .05 the limits are approximately +1.07.

Values of g would be expected to exceed these limits about 6 percent of the

time. For P-values P
rc

= .90 or .10 the limits become t2.72; these limits

would be exceeded about .7 percent of the time.

4. The model for Y
rck

described above deviates in two essential respects
A

from the model used in the first version of these results presented at the

ASA meetings in Montreal in August /972. The first and probably most critical
.

difference was in the specification of.thd error variance C(erck
IMrck)' In

the Montreal model, we let e g ith g a standard normal error and
, rck rck

, (4.23a)

4

drck grc. Prc (I-Prc) nrek(4) (I-n kWhrc

A -
The average variance of erci. under this model4.s

e Vdr
s rot

) M
rot

P
rc (1 -P rc)

,

rc
Ise
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I' a

*

a

t-

lea to the admittedly unappealing- result

A
at

mars (P
rc

) = P
rc

(1 -Pr
c
-) / .

This unfortunate choice of error variance,should have seriously under-

estimated tad between- listing, within control .dell v ariation. The

second change'in the new model was to regenerate the value for Y
rck

each

time that listing unit Eck) appeared in one of our replicateesamples.

This change should cause the simulation to approximate more closely the

expected level of oetween-listing unit variation.

To build within-listing unit variation into our simulation, we first

take note of the two stages of sampling within NAEP PSUs. The, typical NAE?

it-school PS1L,has two,,schoolsrepresenting a particular group package with

12 Students selected from each school. Suppose'we let M
rck

and
rck

denote estimates of the total number of 17-year-olds and the corresponding

number of correct responses from listing unit (rck) based on our sample of

1

(4.26)

schools and studgnts. ,If we assume that schools are selected with replace-

and with probabilities proportional to. known numbers of 17-year-olds,
4.-

say Mrckz for the 2 = 1(1) Srck schools in the listing unit (rck) frame,

then with simple random sampling of students witnin sphools (ignoring the

last stage finite populition correction) we have . -01,
.

. ,

where

Vac (i.
s rck rck rck (rck)2,

c .E2 z2

(rckrOm
/24

S
rck

2

M
12 N2 i)4

E(rck)2, 2.;2. rckZ rckl, -zck' 'mit+

4.(4.27)

represents the betwe4- school, within-listing unit variance component. The

between-students, within-school component takes the form

S
rd

g2

Ic

(rckZ)m
E M a

/=1
rc. rck2, (I-Prc t!rck+=

4 -- .. At

. 61 ,
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With6theSe definition of the within-PSU variance components, it is

' not difficult to bee that
4

2
E
(rck)

+ E
(rckl), PFck (1-PrCk) (4.29)

. ,

This result allows us to define the within - school correlation coefficient

i .
.

'''Ai

E2
rck (rck).K (rck)if }

E

(2 rckt)m3
u (4.30)

.. .

. . .

and to write

vas ( Crck). Prck(1-Prck)
( 1 + Ilorck)/24.

The f011owing computer simulation model was built in accordaAce with,

the variance model in equation (4.31):

with

and
ti

A
M = + g (4:32a)
rck Mrck rck

E (grck rck) 0

,r2 . t
E ., Mik, = Mrck,for t = 1 or 2

also
A A

and

Y = +
rck Prck Mrck nrck

6 (nrck'l rirck) °

E (n m ) m2- p (1-P. ) x .081
rck rck rck, rck volt

64

621

4

)

4

(4.32b)

.r
(4.32c)

(4.33a)

(4.33b)

(4.33c).

...



where the constant .081 represents an.average value for the, quantity

.(1 + lip )../ 24 with c
rc

set to .0366 The errors in the models above

were agaJ1 obtained from a censored, tan 1 error 'generator:'

In the Montreal simulation, we used erro such that

and

2
e Var

s rck
) M

rck

...ad

Z Vat (Y ) 111

*P2
e Var (M + Mr

ck -Pk (1 -P ),
s rck mt. s rck rcrc

<

which leads to

(P rck) :P rck (11-4Prell lirck
- c Vars

(4.34a)

(4.34b)

.(

Compared toitheyariance model in equation (+.3l), this formulation would

appear tounderrepresent the within -PSU variation.

Variance AtTroximations
.

In addltion,to estimated totals of the numbers of l7 -year -olds

and the numbers of4correet responses Yom, Lola., variance estimators

for Var(i / ?f ) were computed froZeach sample. The first of
+ ++

these variance estimators (VI) uses the first two terms of .the bias-adjusted

Yates-Grundy type estimator in equation (3.29) with a jackklife pseudo value

,
21' 31 P - 30 ____.___ (4.36)

ma
.

ing the place of_31 yik, the corresponding pseudo value foi Y . .

. , 1 / ,

The form of the jackknife linearization, which uses
0

A 'C -; (Ytk Ytiki)
P

1*

/1 --(ma m£'10)

63 ,65

=

-

(4.37a)
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t (Ykk --Yk'10)

Pk'M 7 2' 6

"1" (mtk

(4.37b)

might seem more appropriate for.variance estimators involving squared

differences. Recall that this was the form used wits the Year 01 Design, 6

where there were two PSUs selected per primary stratum. To simplify our

calculations, we decided to use the linearization in equatio6 (4.36) for

all four of our variance estimators. While we intend to present a comparison

of alternative jackknife and TaylorSeries linearizations in a su bsequent

section, at this point we felt that the form of our estimation equations
.

was more crucial to the comparison than the type
d
of linearization.

(

The second variance estimator (V2) studied in the simulation would be

appropriate if the_PSU allocation to cells was fixed and PSUs were selected

with replacement. A circul successive differencing'scheme was used

_within major. strata to colt se cells where Only one PSU was selected. For

this purpose, the States in table-471 were/arranged in the following

circular array

ielAlas.-41esh.40reg.+Calif.:+Nev..-tAriz.-W.14.-+Texas

\ Hawaii* Mont.* Idaho* Wyo,* Utah* Colo.* Okla. 0

w

This particular ordering is,bpsed ongeographical proximity and represents a
r A %.

crude attempt to make adjacent States in the array more alike than nonadjacent
/

States. If u1(1) r
c
(s) represents the ordered array of single PSU cells

in a pattern(s) sample from column c and E
(2
4
)

denotes summation over control

cells with n (s) > 2, wd.have

nl(s)

V2(s) n Et
(2+)

n,(s)

kE
(ptk pg)

2
/ (nL(s) - 1] (31) 2

l

7 rc(s)

+ E E (
re

- p 11-1,c)2 / 2(31)
2

curl ,

64 66 ,

.41

(4.38)



amda.

where

re(s) + 1 1 .

Notide that the second term irk equation (4.38) includes ell6cells with

n
Z -
(s) 1 whereas tine singleton cells in the corresponding term of V1(s)=

(the Yates- Grundy estimator)' must have > 2 .

Our third estimator (V3) ignores any contro in the,State dimension

and computes the variance as if PSUs had been se ected with replacement
,

framAte seven major strata. Supposisw = 1(1)nC.(S) indexes all the PSUi

in major stratum c. Then >r

nc(s)
. e

V3(s) = E nc(s) (pwc pc)
2
/ (nc(s) - 1) (31)

2
. (4.39)

c1 w=1

I

S

The final_ estimator (V4) ignores all controls, using the formula that would
.

.

be appropriate44f the 31 PSJJs were an unstratified selection with replace-

ment from the entire list of 221 first-stage listing units. T his estimator
, .

. is computed as follows:
- .

7
n
c
(s)'

V4 = P )

2
/ 31 x 30 .

641

,

(A.40)

Empirical Results

Table 4 -2 presents the sampling expectations, EP, and variances, VP,

for nine estimated P-values when the Hontreal models applked. The
%

quantities (EY/EM) representing the ratio of numerator and denominator

sampling expectations show that there is very little bias due to raao

estimation of the P-values. Unfortunately, this is pot the case with the

four variance estimators The bias-adjusted Yates-Grundy estimator tends

, to underestimate VP, wheteas the other three approxJocations tend seriously

to overestimate VP. The magnitude of the various estimators tends to .

increase from
N
V1 through,V4 as one might expect;. V1 makes an attempt to

account for the between-PSU variability properly while underestimating

the within-PSU variability. The other three estimators, while accounting

.

67.
65
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,
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Table 4-2. Bias comparisons for four variance estimators (Montreal model)

'" Pa (EY 1E1) iaL

10.16 -10.17

38.12 38.09

40%39 t 40.45

62.42 62.3

69:11\ 69..14

72.92 72.85

77.52 77.46

91.73 91.73 1

93.55 93.53

VP EV1 EV2
'' r

3.63 2.97 5.43

4.17 2.70 -6.14

4.24 , 2.19 , .6.41

5.34 4.29 8.09

4.26 3:95 7.26'

3.77 4.21 6:66

3.54\ 3.55 5.20
,

3.05 2.63 . 2.14

3.19 ,3:1.0 '2.36.

, EV3 - EV4
t
4t5Q,

.-

5.92

e4Z 7:63
1

6.85. 7.73 /

8.75 9.32
/

..7.32 7.95

,6.49 7.21

-5.42
,

6.08

2.32 2.64

2.56 3.08
, ....,:,

for the within-PSU variation properly, tend to civbres,timate the between-PSU

variation by ignoring any finite population corrections and overlooking

various'levels of control beyond stratification.

Table 4-3 shpws that in terms of least total error, root mean squared

error, V1 is superior to V2, which has a ilighi-edge over V3. The '

unAatified estimator V4 performs poorly for all except the two laegest
8 '

P -values. The average performance of the, four estimaptKI -over. all nine
4

P-vaiuds.da summarized kn table 4-4. In terms of Abs lute relative bias,
. ,

the Yates -drundy Xvte estimator looks better than the then three. When
-*

one looks at relaci.ve total error, or root mean squa ed error divided by

the advantage for Vi is not as great. The-itability figures in tables

4-4 esent averages of estimated degrees of freedom 14h4e, for the,i -th

variance estimator,
*0 ..11&I

ti

2f(i) E 2[E1(i)12/Var[Y(i)] for i 01.1, (4.41)

e

These stability mea sures relate directly to the s a e of the T-like sampling.

distributions summarized in table 4-5.

The a
-__i.

eraged fi4nency didtabutions, presented in table'4 -5 show the

proportkon of -times that 1' a .

r

(

4
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Table 4-

e. ., .

. & . I
.

4.'

Root mean squared error of lariarice estimators (Montreal model)

EP VP
.If.rS3/1. AFS112._ 4:1SV3 5174

10.17

38.09

40.45

62.43

.69.14

,72.85

77.46

91.73

'93.53

3.63

4.17 ,

4.24

4.26

3.77M

344

3.054

2.95

2.89

'3.65

'2.56

9.35

2.66

1.64

_ 1.58 1.79 411'1.68

1
i'(1) EP) t F(i)

and Z-like statistics

, 12,

4.70 * 4.65 4.8

4.69 5.36

4.55 4.80 5.65

6.48 '6.65 7.12

5.41 #- .5.37 5.66.

5,98 5Y.61 lo

3.57 3.53 13 .95

48 2.14 2,03

...

I.
0.

b.
-; . .

for i = 1;2,...4, (4.42)

4

, Z (P = BP) it /Tr-P,

a-

(4.43)

fall within the stated limits. Notice that the T-like statistics have

been corrected for bias in 17(Q..by apnying the factor F(i) = VP/EV(i).
,

Comparing Z to thellormal frequencies in the last row of table 4-5, one

notes that the sypmetric intervals are reasonably close, especially for

the larger, more critical intervals. Some positive skewness J.% aserved

in the asymmetric intervals. Of the T-like distributions, T2 appears

6losedt to Student's T with 30 d.f. Recalling thestability measures in

table 4-4, one caA see that the distributions T(1) .through T(4) become

,more lake Z as the stability of ir(i) increased, ,As estiMates of apprmd.-
,

mate "degrees of, freedom" these stability measures ate grodt underestimates.

In naive appiximation basesd on the number of PSI.Is selected is on thp

erliand reasonably.accurpte. Before we conclude that '17(2) is superior

to the other' estimators when it comes to miiting inference about P, tt is

important to reca4 that the results in table 4-5 are corrected for bias.

If thve-correctidns had not been made, .none of the estimators would yield,

anythinFresembling a T distribution.

I
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Table 4-4. Average performance of variance estimators (Montreal model)

Nei -Bias -(X)

V1 V2 V3

. 50 53

V4

63

Stability (df) 3.52 4.47 4.64 5.51 MP,

Rel-Erroy (%) 72 101 101 108 -

Table 4-5. Sampling distributions for normal and T-likelstatistics

Proportion u /in ±2.576 ±1:960 ±1.645 ±1.282 ±1.036 (-11960,0) (0,1.960) (-1.036,0)

student's
.

udent's T(30df) .9848 .9407 .8894 .7903 .6915 ;07.7ti .4703

.852288941Ti .9367
.

6. .5 .7662 .6829 .4379
.

.4'562
1

T2 ,* .9816 :9413 .8967 8074 .7158 ',..4587 .4827
..,,

.

,T3 :9861 ',:9480 .9064 .8142 211 .4628 .4852
,

.

T4 .9859: '.9516 .9088 .8204 .7,277 .4632 .4883,

r

(0,1.036),

.3500 .3711

.3458 .3458
$

.3323 .3506
,,

.3473 .3684

.3507 .3770
....

v

.380.3702

.3750.3750.

444 , ..
e. .4849.9906 .1,405 .9246 .8423' .7509 .4756,,

..

,'.9900 .9Apt .9000 .8000, .7500 .4750Norm. Deviate ,

,

. ,
'70' , I. .

,
.J. ,..e" .. , . .._. Ow a V
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In,figure 4-1:we have presented a plot of true and estimated variances

against their corresponding P-values The curious relationship (or lack

of any) between the true variances an P-values is symptomatic Of the

problems inherent in the Montreal model. We should expect a strong quadratic

relationship between P and VP modeled after the simple random sampling

case where VP.I., 13 -(100 -6 P)/nr. Tables 4-6 and 4-7,display results based

on the new model where the within -PSU variation in the est ated number of
,

17-year-olds,
say Mrck,is set -to Mr2ck (or Mick wi

t=2).
,

thing we

notice immediately about,tbeZt"tables is tha the bias-a lusted Yate2

Grundy. estimator, has
/

s been eliminated_ consideration. The reasons we

have excluded V1 from further consideration at this time are two. The

principal reason is'the excessive cost of computing V1 relative to the

9.0 /
80

7.0

6.0

.

4,0 11,,..44irOM .....
.' 3 0 3

2.0

1.4

AP

EV
2

iv
1

2
i VP .1=1 AO* 4.1.

. W. ...

a

a

-
"-

63 61,

a

3
ao

10,0 20.0 30.0 40.0 50.0 50.0 70 0 80.0 SU

P Valto

Figure 4-1. Montreal model (true variance vs. estimated variances).

r
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Table 4-6. Bias comparisons for three variance
estimators under the new model with tl.B2

EP

10.15

VP

3.21

EV2

5.01

EV3

4.99
4

.

EV4

5.46

38.34 8.29 1073 10.97 12.12

40.41 8.72 i 10.84 11.18 12.01

62.51 9.30: 11.56 32.25. 12.81

69.06 8.08
I

10.23 10.27, ., 10.95

72.94' 7.04 9.38 9.15 9.82

77.53 6.22 7.36 7.53 ;: 8.20

91.71 3.73 2.81

..p,

2.95 -

3.27

93.47 3:17 2.29 2.51 3.03

4

V

Z.

Table 4-7. obesign effects with N "744 for new model with t2

EP DEPT

10.15 2.62'

38.34 2.61

40.41 2..69

62.51 2.95

69.06 2.81

72.966 2.65

77.53 2.66

91.71 -3.6

'93.47 ' 3.86

""..

/

Di D1-_ D4

4.09 '-

3.38

3.35

3.67

3.5t

3.54

3.14

2.75

2.79

4.27 . 4.45,

3.45 3.81

3'.43 3.71

3.89 4.07

3.58 ' 3.81

3.4% 3:70

d3.22 3.50

2.89 3.20

3.06 ). 349
.

173

70

4
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other estimf tors. This cost is on the average 16 times greater than tna

,cost of 1/2, the cheapest estimator. Finally, although V1 has the smallest

bias, the& fact that it tends to underestimate the true variance is dis-

concerting. If an unbiased variance estiDpator is not available, one generally

prefers an overestimate%which results in conservative inferential statements.

Although it may be hard to judge the dollar value of a 'good7! variance 44 "N
estimator, excessive computing cost would seem to constitute a reasonable

excuse for eliminating one if several mediocre estimates.

Figure .4. -2 plots the true variance and ,the expected value of V2 (the

least biased of the conservative estimates) against die corresponding

P-value. The pew model with t i 2 exhibits the desired quadratic relation7

ship betveed V? andP.11,It is interesting to note that VP does riot decliAe

for large values of P as fast as one might expect. This is demonstrated

13.0

12.0

110
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80

7.0

6.0

5.0

4.0

30

2.0

A

/ .//
-

.

92

4%.

Ev. 3
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Ay)

3

.:\
.A%

-

6 ,

N
.

,

3'

/
/

.. 100 no, 30 0 40.0 SO 0 60 0 700 80.0 . 90.0
. . {
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'F(igu 4-2. New model with ,t =2 (true variance vs. estimated variance).
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8.0
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6.0
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4.0

30
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1.0

clearly by-the jump observed in design effects or DEFF values for the two

P-values (in table 4-7) exceeding 90 percent. The three variance estimators

behave more symmetrically dropping below VP for P > 90 percent. The median

differences between those design effects estimated by V2 and the true design

effects based on VP is ( +) .66.

Figure 4-3 shows a plot of true variance VP and expected values of V2

(EV2) for 20 P-values, using the new model where thewithin-PSU variation_

in the estimated number of 17-year-olds M
rck

is equal to M
rck

(or M
:t

with
rck.

t -l). This model yields a surprisingly smooth parabolic relationship

betweZP and VP. The slow asymmetric decline in VP for large values of

P is again apparent with V2 dropping below VP near the point p a 87.5

mai

.0 4r 1'0

I/ /
ft

. / .
`44.t. ./

/.. %I ..

)1.4\
.

/ , 4. ....
f <,

%

i . . . 11

i
I.

r 1 I i 1 r

EV:

, VP

. -
eb.s.

11.

110 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

Figu're 4-3. New model with toll (true variance vs. estimated variance).
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percent. Table 4-8 shows the rel4tionship between VP and the expected

values of V-2, 17,3, and V-4 for the 20 new model P-Values with t=1. Design

effects D-2, D-3, and D-4, based on the three conservative variance

estimators, are compared to the true design effects (DEFT) in .table 4-9.

The median differences between the estimated DEFF :rased on V2 and tr.e true

DErF is, for this case, (s).64. Tdoles 4-10 and 4-11 show thia.eNerage

performance of our three conservative estimators for the new model with

t*2, 1 respectively. Although,V4 is consistently the most sta14.e.of the

three estimators, V2 `tends to have the smallest bias and smallest root mean

square error as reflected in the average Rel-Bias and Rel-Error terms.r

AT

.
Table 4-8.

a.

EP

4.25

7.50

10.18

15.00

20.00

'

26.00

32.00.

38.18

y .
40.32

47.50

55.00

62.43 .

69.04

72.95

77.51

82.00

. 87.47

t
91.69"

r r

93.53'

mop

4

Bias comparisons for the new model with t=1

1.7?

.48

-5' EV2

".56

EV3

.60

EV4 .

.631.

1.41,

2.36

2.0'\

3.79

3.22

13 .82

-1.62

4.41 - p
r

3.92 'v.29 7.37 8.46 i

4.f 51 6.76 7:03, 7.36
t

6.23 .. 10,02 lo.. .30 10.82

7.2p 8.76 8.95
,

9.81

8.40 10.00 10.37 11:65

8.61 10.28 10.64 11.47

8.80 10.47 10.83 14.06
0

8.54 12.40 32.94 13.54
1

8.04 , ,10.70 11.43 12.05

6.89 10.05 16.02 10.72
.

;.20 8.75 8.51 9.24

5.67 67,66
.

6.88 7.58

4.87 6.10 6.78 7.51

3.77 - 3.60 4.09 .4.67

3.06 1.99 *2.11 2.43
4

.q.70 1.52 1.75 2.25

2.33 .73 .79 '1:18. a

73 7d ,
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Table 4-9. Design :effects for the new model with toil (N'744)

EP 'DEFT D2

4.25

7.50

10.18

15.00

20.00

26.00

38.18

40.32

47.50

55.00

62.43

69.04

72.95

77.51

82.00

87.47

91.69

93.53:

96.00

.88

1.51

-1.92

2.29\

2.10

2.41

2.46

2.65

2.66

2.63.

2.57

2.55

2.40

2.42

2.45

2.56

'12.99 -

3.32

4.51
N

1.02

2.16

3.08

4.25_

3.14'-

3.87

3.00`

3.15

3.18

3.12

3.73

339

3.50

2 84 r

3.07

2.44

1.94'

1.87

1.41

D3 D4

1.10 1.15

3.45
41

4,

3.88

3.11 3.51

4.30 4.94

3.27 3.42

3.98 4.18

3.06 3.35

3.27 3.67

3.29 3:55

3.23 4.19

3.89 4.07

3.63 3.82

3.49 3.73

3.21
%

3.48"

2..94
41

3.24

3:42 3.79

2.78 3.1/

2:06 2.37

2.15
.

.
2.77

1.53 2.29

Table 4-10:--Aeterstm,-444409-mnie of variance estimates
"- under the new-model-with tog2

Ref -Bias (%)

Rel -Error (%)

Stability

. V3 V4

29.41 29.72 35.02

67.64 66.04 70:59

8.40 9.68 11.21

74

77
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Table 4 -11. Average performance of variance estimates
'under the new model with tag:.

Rel -Bias (%)
-

/L

Rel -Errl'hr (x)

ity

V2 V3

37.69
ow'

68.05

10.46

44.70

71.28

12.75

55.08

79.33

15.32'
4

The histograms in orables 4-12 and 4-13 are averaged over nine data sets

for the first two models (Montreal and new tia2). The third histogram in

both tables is based on 20 data sets. The normal or Gausian-type distri-
.

butions agree rather well, at least over the larger symmetric inteuVals with
Ow4

the, standard normal. Curtously enough; the 1-like distributions based'on

V2 han2lightly fatter tails for the new model runs, while at the same time

. the scability measures for V2 increase from 4.47 for the Montreal model to

8-.40 and 10.46 for the new model. These stability measures are still

considerable underestimates when viewed as approximations for t:-.e degrees
.

of freedom associa;ed with the corresponding 1-like distributions in table

4-13.

Camoarison of Taylor Series and Jackknife Linearizations

In chapter.2 the Taylor series (TS) variance approximation formula
for a MEP P-value equation (2.20) was presented. ',Zt was shown thaco. for

a deeply stratified sample with two primary selections per strarita-, the

TS variance estimator was smaller than the corresponding jackknife (.K)

variance approximation. To compare the TS linearization to our jack4nifed
,

.
variance estimators in the context of the simulation udy presented in

_ .

,1 the previous sections, a Taylotized deviation
mi

z -la 31(y
23c

m
Lk 2k 2k)

75 78.
i

V

(4 . 44 a)
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Tebls 4712. Sampling distributions for Gausian type statistics

Pkoportion w/in ) ±2.57.6 ±1.960. ±1.645 .282 ±1.036 (-1:p60,0) (0,1.960)

Gautiian .9900 .9500 .9000 .8000 .7500 .4750 .4750

'Montreal Model .9906 .9605 .9246 .8423 .7509 .4756 .4849

New Model: t=2 .9916 '9572 .9173 .8307 .7406 .4672 .. '.4900

New Model: t=1 .9915 .9612v .9188 .8326 . .7386 .4774 .4838

Prqportion w/i1

Student's T(30df)

Montreal Model

New ModelCt=2

New Model: t=1

ti

(-1.036,0) (0,1.036)

.3/50 .3750

.3702 .3807.

.3564
.

.3841

_.3662 6.3725

Table 4-13. Sa;Ipling distributions for students. T-like statistics using V2

±2.576,.

.9848

.9816

41'. 792

.0781

±1.966

.9'407

.9413

.9358

..939

±1.645

.8896

.8967

: .8878

:8958
.

±1.282 ±1.036

.7903 ' .6915

.8074 .7158

.8024, .7100

.8054 .7146

(- 1.960,0)

.4703

- 4587

.4583

.4644

7'

(0,1.960)

.4703

:4827

' .4774

'-
.4754

4

'

,

(-1.036,0)

.3458

.3473

.3510-

,3563

(11,1.03.6)

.3458

.3684

. .3590

.35114

A

V a.

80*

4
1

t
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was used in place of the jackknife pseudo value

Y,-
= 31 P - 30

A 112,k

,a

(4.44b)

when forming the estimators V2, V3 and V4 as specified in equations '4.38,

and 4.40 respectively. -
."

Table 4-14 shows the results from an independent set of 1,000 samples

.generated according t o the previously described simulation model with t=1.

Contrasting the first two columns'of table 4 -14 with the corresponding

columns of table 4,8 shows good agreement between the two independent

(1,000 samples) replicates. The maximum standard deviatioh for the sampling

expectation of P is .03 percent with an average across the 20 exercises of

.01 percent. The simulation estimates of VP,.the sarpling variance of P,

exhibit a maximum standard igireation of .12 percent and an average deviation,

-.across exercises of .04 pertent. Ubile it would have been desirable to make

the Taylor series versus jackknife comparison on the same stt of 1,000

samples, our software.design was such that f was more economical to make.

independent runs than to incorporate both ca culations in the same run.,

Table 4-15 presents the average performance of the three Taylor series

variance estimators. Compared with the jackknife results in table 4-11,

we see a reduction of 3.3 eo 4.5 percent in relative bias. The corresponding

reductions in relative 'total error range from 4.2 percent to 8:3 percent.,

The stability measures for the three Taylor series esEiMl@trs show a
.

general fncrease of one unit ov er the corresponding jackknife estimators.

This indication of a slight increase in stability for the TS estimators

does not show up in the T-like distributions pr'esented in table 4-16.

While the tails of the TS

.nt counterparts, they are

side the ± 1.960 interval.

distributions are more symmetrical than their

also ratter. The percentage of statistics out -

is about 1 percent greater for the TS 'statistics.

While some consideration was given to developing a bias-correction

factor for. the V2 estimator based on these simulation results, was

felt that this would-be necessary onlyff actual Year 02 sampling errors...

based on V2 were considerably larger,than Year Cl sampling errors. While

I

.

sl



. .., .:
. .

-..-

. Table 4-14. Bias comparisons for the new model with ti.

7L

and a Taylor-series lineaFization

4

'
1

4.25

7.501

10.14

15.00

'20.00

26.00

st:00

, 88.17

40.30

-47,50

55.00

62.41

69.01

72.88

77.50'

82.00

87.50

-§1.68

93.50

96.00

.

(

.

.

,

VP

0.48

1.43

2.34

3.90

4.57

6.24

-7.36

8.44

8:73

8.92

8.56

8.04

6.85-

6:36-

5.50

4.79

'3.81

'3.10

'2.74

2.31

4c
1

--"'

p

,

1

''.g:

'a

ET2

0.56

1.97
.

3.69

'7.11
. IV I

6.57,x,

9.51

8.30

9.68

10.07

10.05

12.24

10.57 1

9.75 -

'8,51

6.60

5.89

3.51

1.95

1.53

0.69

t

ET3-

3.11

3.75

7.16.

6.78

9.87

8.57

10.05

10.38

10.52

12.72

11.32

9.68

A.28

6.72

6.60

3.98

2.08(

,1.76

0.74

ET4

0%64

3.49

4.22

8.25

7.13

10.46

9.39

11.26

11.26

13.6

15.26

11.85

10.41

9.01

7.43

7.33

441

'2.42

2.26

1.16

I-
4

0
4/Table 4-15. Average performance of Tayl r -series

. estimates under the new model with t.q.
.

/ 0

/. .., . .

, J e:,, . , I *IT .72 T3 T4. b

"..ft lei:lid9 ar""*. . ; I

O 34.2 .: 46.66
A

50.58
. .

Rel-Error (%) 71.03,
,

63.44 1 66-.48

Stability 11.23 16.31
,./

13.60

lit
0)-

-um 41

11`

t
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. 1 . 0.

, ' I ..0 t , Table 4-16.'8am') Ling dilaributions for T-like statistres-
0/ c.

--- - - AA.c--cd--d.--v.---s...........s...d A......r.-.A..L.1....-.....-,.. ---------..-.A.-..A.7..-daAm..--.7----- +La: .r..--- .

...;roportion w/in 4+ 2.576.
s . .

Stttslent:s T(30df)' I .9848, I,. t .
Taylor-Series V4 .9766

jackknife V.2 ,
Tayior-Series-V3

Jackknife V3

Tay] or-Seri-es .174

Jackknife

d

V

-I

A

I-

+1.960 I-1.645

. 9407 .8896

. 9282 .8732

0.9787 .9398 .8958

.9788 ,.930.7 .8770
p

. 9802.., .9418, .8 97

.9802 11. .9337. .888

. 9.786 418 .9004
I

.

/
4

'a

-1.282 +1.036

..7903 .6915

.7738. .6750

.8054 .71/46

.777 :6788

.8090 .7192 -

.7824 .6857,

.,8150 .7237

( 1-964,9)

.4703

.4620

.4644.

.4626

.4650

.4652

.4632

1

{0,1%960)

.403

. 4662 -

. 475k

£. 468t

.4769

. 4684

.4786

(-1.036,11)

a
.3458

.3351

.3563

.3366

.1596
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.3613
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the simulation indicates strongly. that etch variance approximations

consilerably overestimate the variability ofN 'controlled selections,'

the estimated level of precision could still,be adequate foi National

Assessment reporting purposes. In order.to resolve this issue, sampling

errors were calculated'for 131 Year 02 national P-values using a version

of V2 with the squared diffetence jackknife linearization employed in .

Yr 01 and reintroduced in equation (4.37). Leting h = 1(1)4 index

.NAEP's four regional strata, this variance estimator took the form

. 4E

4;. ,(2+) 11112 -1 11111.

var'

.

11302) '11i6kk')14(nhZ-1).

with

4 7 rhcmw ma raw.

+ Z E E
b2

p (u,u+1)/8
h=1 c=1 u=1

hc

rhc+1 E 1

'fto

.41

. . -] r

iSyht(k,k') +.43;;12,(k,k')

M - + Amhz(k,k')

4112(kPktY E (711Z4511240)

.

6Amilit(k,k1)- i
c E rak %210 )

,

,. ., . 0
.

equation 4.37a 9:0ad b, 'E(24.) denoes summation ov4 State by mAjor

4'

veils -2 with data from two or more PSUs (nia
L.

2). The second 44
.

(445a)

.A4.45b)

equation 4.4 5 involves suCcassive squared differences 4mong,
444

.
ff

single PSU stratum-s of region -h. Recall that the
.

rhc

PI'

11K 4..

Al
I

1



indexingux1Wr. of single ?SU cells follows a particular ordering
nt

of the States in region-h based on geographic proximity.

The 131 resulting variance,estim4tes were summarized in terms of

design effects. This analysis paralleled wherever possible tine breakoowns

presen ed in the Chromy et al. summary of Year 01 effect4 The following

chapter etails this comparison of Year 01 and Year 02 sampling errors.

Air

I

4

.1

f

4
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Chapter .1: MPARISON OF' YEAR 01 AND, YEAR t SAVIPLING,ERRORS.

1

Inlroductiori

The,com utet:/sipalation study of Neoiona Assessment's Year 02 saTRle

described in ceding chapt r suggests that the standard variance
J! \

approximatiov recommended for a controlled selection of f)rimary,00lnits

seriously undeTestimate the pitecision of NAZY P-values. To assess Vhe over-

all impact of Year 02 sample esign changes coupled with significant positive
.. -` . . . t

bias in the associated sampling error estimates, 60 9-year-old and 71.13-
e'

.

year-old reading exercises from the Year 02 Asseisment were exatine4.,
''i

, , , , z., ,:, .0

attd sample design Offeets-(DEFFs) fo-r the 131 national 13-71:aludsiweri-

caolipie sihg the variance estimator described in..equation 4.15. Similar'

sets of 131 EFFs were computed for Ma's four regions, two sex categories,
y..

I.

and four SOC subpopulations.

Stem and leaf displays of hese design effect dzstributions,were formed,

tg facilitate the calculation of median effects and other sample percentiles

[ref. 1]. Table 5-1 illustrates the display or national 'design effects .for
.

th e tw age classes represented. The left most Column indicates the first

two significant our nationar-4.gn effects., Associaced tnirc
. .

'' the
. digits are aggregated in joining rows. For example, the aggregate to tn

right of 1.2 represents threg!, nine-year-old DEFFs' taking vaIxek 1.26, 1.- 26,

. .

and 1.22. The third column is a running count from the low And high .ends
.. ,

of the distribution toward the center. This tally facilitates location cif
it.".

the median DEFF and the two guartiles, ;. These are grouped i?elow eacn display
. .

along with the starred extreme values. In addition to these summary pe.r-
,

centiles, the display provides an accurate vie' of the shape.of our desizn
A$ t

effect distributions.

.

01.

Comparative Analysis

The 131 Year 0.2 d

to, 3.93 with a median .value of
. ,

10.88 and a pediaA of 2..38 for

'et,al. Thole )-2 compares the

DEFFs.

a

ects summarized in table 5-1, range froF .94

2.00. Thts compaves co a range of .90 to

the 149 Year 01 exercises examined br Chromy

distribution of Year 01 and.411kar,02 hational

4.1
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Table 5-1. Stem and leaf display of Year notational designoeffects

/Mite§ Thirteens
.

.5 , .

6
.

:7..

.8 .
.s

r

.9 54 . 2 45 2

1:0 635 5 ' 356 5

1.1 9 1 3 6 39 7

1.2 662 4 4592 10 2245669 14
1.3 I . .

1.4 66793 .9 ' 50 12-- 0356679 ' ,21
1,5' 27298 14 6 13 226789 2

(

1.6 0138. 18 99 , 15 013899 33
1:1 '' 1651 22 5629, 19, 11255669 41

1:8 8 23 0518214 26 01124588 49

1.9 067778 29 2738118 33 0112367777888 62
2.0 04 -2- 907930052 -9- 00002345799 -11-

.

2.1 '15951 29 _- 37 299 1135579 58___

.2.2 021 .24 53 27 01235 51
2.3 c73 21 47Q804 25 003447?8 46

0. 2.4 7111 19 564 19 114567 38
2.5 12 16 503 16 01235 32
2.6 3472 14 45 is 13 234457 27
2.7 019 10 4 019 21.

.1 a .

Tata,.

2.9
3.0

3.1
3.2

3.i
3.4

3.5
3.6

3.7

3.8

- 3.9
4.0

4.
4 ,

729

6

. 5.

4

5 1

s

68453" .

8

' 3

344568
4

13
07

2 2789 6

5 2

1 3 1

a .

* 1.19 0.94 -

4*.

* 0.94
Q11.60 Q11.76. Q11.69

IC M 2.02 M 2.00 M 2.00
Q32.52, '02.45. Q32.47
"le 3-45 * 3.93 * 3..93
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Table 5-2. Distributions of Year 01 and 02 national DE Fs

Design Effect

< 1.00

1,00 - 1.50

1.51 - 2.00

2.01 - 2.50

2.51.- 3.00

3.01 - 3.50

3.51 - 4.00

4761 - 4.50--

4.31 - 5.00

5.00

Year 01

Number

1

16

29

43

32

8

10

5

3

2

Total 149

. Year 02

Per ent Number Percent

1 2. 2

11 19 14

19 45 34

30 . 34

21 24. 18

5 5

7 1 1

2

1 -

100% 1-3-1

11
100%

.1

Th'e Year 01 distribution includes 37 individually adtiinistered in-school

exercises and 16 out -of- school young adult exercises, while the year 12

distribution includes only.in-school group administered exercises.

this lack of diversity it themode of adminittption may explain sore of the

increased stability shown by the Year 02*DEFFs, suspect that reduced

variability in the Year 02 weight distributions had a more pronounced' effect.

It is also expepted that the inclusion of individually administered exercises

in the Year 02 distribution would enrich 'the lowerend of the distribution

and shift tie medin farthtr below the Year 01 value.

While there appeared to be a tendency foi Tear 61 4.-nIschool DEFFs tro

decline as, the age of respondents increased, no consistent trend was db-
.

served in the.Year 02 data.; at least, not between the, ages offtnine and

thicteen. The regional trend observed in the Teat 01 data is also coscared

i die Year 02 tabulations. Table snows .that while the supretat- or

A
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11...



Table 5-3. Comparisp regional DEFFs

Median-DEM by Region
-. Mode of Subject % Number of 1

IYear Ass Administration Area 'Exercises 'NE SE C' W

01 9 Group Writing 24 1.89 2.93 2.32 2.85

13 Group Writing 5 3.05 3.65 3.50 2.65

02 9- Gioup Reading 60 1.53 2.52 ,1.73 1.71

13 'Group Reading 71 2.04 1.66 1.77 1.75 -

c

. ?southeastern DEFFs is maintained at age nine, at age thirteen the trend is

reversed with southeast low and nottheast_high._ As in Year 0l there was

little difference betioen the sexes with males registering a median DEFT

of 1.72 and females 1766.

Chrcmy et al. also reEorted a possible tendency for big tity and urban

fringe areas to yield smaller DEFFs than the more sparsely populated medi

dry and small-piace subpopuldLioub. /his tendency it not'apparent in the

Year 02 DEFFs .tdisplayed in tdble 5-4. t

I6 summary, one Can state that Year 02 design efiectsfare somewhat

smaller and less variable than the Year 01 effeCts. While it can be said
,

that the Year 02 effects varied by region and SOC, there were no, consistent

trends. These factorb interacted in cur us ways with theyage class effects.

.Conclusions

`Comparing the indicated level of precision for Year 01and Year-021
at

NAEP exercises, it was apparent that in spite of the suspected positive:

bias in Year 02 sampling errors, the overall level of precision wab ilepraved

somewhat in Year 02.' In light of this result, no bias correction44a

attempted for. the Year 02 variancea. The sampling error approximation which .

. .

._

uses squared differences of jack ife pseudo-values within control cells and

squared buccessive differences *p een single PSU cells.within majcir size

of community by -SES substrata (V2 was judged to be the least biased of the
t . 4

computationally feasible estimato s. The jackknife linearization was

.?, SO
86
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Table 5-4. Year 02 DEFFs by size oft community

Ante

Mode of ABuSject
Administration Area

Number of
Exercises

MMedian DEFTs by SCC

B.C. U.F. N.C. .S.?.

9 Group Reading 60 2.38 1.64 2:25 F2.04

13 Group Reading 71. "2.05 1.66, 1.51 2.05

a

'Total Group Reading 131 2.16 1.65 1.73 2.05

V
retained since tie improvement, demonstrated for tne Taylor series stimators

. .

did not justify the added Cost of redesigning-NAE?s sampling error ofr.:are.s

National Assessments in-sthcol and cut -of- school designs for a sass-.

meat Yeais,02Varougp 04 re-242A brae,-to2ly- the same witn controile

jj, selection tzed at the primary stege to allocate PSUs,32 State by ,or
I

,

. stratum control cells within regions. The sampling errorsmethodology

developed forsthe Year 02 sample has been applied dire.trly to calcus to
. .

. .

,. Year 03 and Year 0= sampling errors.
...

. .

In view or y ne d 1 fficultiep associated with producing reasonably

' unbiased sampling error estimates for controlled selections, a major re-

design of NALFs primer-4 sample was initiated Kit the Year 05 assessment.

The Year 05 (1273=74) primary sample included the, 1S largest SnSAs.in, 1970

as self-representing ?Os. Sampled ?Sus 1:7ere stratified by region; State

and site of comtunity. NAE P's requirement that all States be represented
, . . . .

.

in the sample was met by carving Out a stratum within each State which -as

not already covered by e-self-representing SMSA. These State strata were
, -

/strata

two primary selections wherver size pa ...itted. Some single ?fl

. strata were carved out in small States.
.

Listing is frpmStates already
. _

. J.

covered by self-representing SMSAs and those not cont fired within the
4,- . .

"carved oututate substrata were placed.in.a regional mg.' The regional
e.n . .

-11: obol was stratified alqng size of co=unty lines ler. two or three selec-
t

itOris'per stratum.
!ea

4 4

Sampled PSUs were selected with p .babilities proportional,to :nerd

' -
14-year-o14 populatipn in 1970 with s me adjustment to effects an 0%7qt-sampling

ele

.

87 9i
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Aft I

of PSUs containing low income inner city areas or highly rural counties.
f

Sampford's xerective PPS. ;ahout replacement selection method was used.
f 4

0111 Aside frqm the, 345 self:rI. epresenting SNSAs, NAEP's Year 05 primary sample can

be descr/bed as a deeply ptritified PPS selection of two or threfi primary

wr

units par strata. The few single' PSU strata carved out of small Stat'es we

were paired within regions for marimiceestimation. In order to account

for the within-PSU variability of the self-representers., replicated school

samples were drawn. With the planned collapsing of single PSU strata and

the replicated school samples within setli7repregenters, a variance approx

imation based' on squared differences.between,expanded-up PSU oontributions

(or replicate contributions) within.strata'Shouldri.e rFasonebly unbiased.

Some overestimation could be expected due td igeing the effect of without-

replacement selection of PSUs and replicates. Meiailed description of the

Year 05 NAEP samples can be found in RTI's final report for assessment Year 05

[ref. 2].

The Year 06 (1974-75) NAEP in-school primary.sadple wis.essentially an
4

independent replicate of the Year 05 sample selected from the aeeply strati-
..'. .

fled primary pnit framajevelopcd for the 73-74 survey. Variance estimates

for Year 06 statistics were again obtained fro quared differences of PSU

(or replicate) level jackkilfe pseudo-values summed over primary strata.

For the Year 07 NAEP sample, a deciEhon wasmye to, draw four non - overlapping

samples to be used successively for Years 07 through 10. This was accom..
..-

plished by adapting the deeply stratified Year 05 design strategy to select
. . ,

enough PSUs and replicated school samples within the self-representing

primary units4to serve for four years. The combined sample wad then parti-

timed at random into four equal sizedyesrly samples. To Preserve valid

PSU replication, primary strata in the master sample were Combined and the

associated primarys were randomly partitioned into four sets each containing

two or4occasionaIly three units. By relaxing the all-state requirement to
tA

assure complete state coverage over, the four year sample, it was possible to'

fissure that no school would be visited more than once during the Year b7

through Year 10 assessments.

-1
1
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The variance estimation methodology adapted for the year 05 and co

iamples was modified to'suM spared diffvences tween PSL' (or replicate)

psuedo-values and the corresponding primer stratum mean. With more

primary strata containing three units,..,this modification was made ,to
.

bring NAEP's variance estimat,ion in line wLth ihe geneial Jac4kmi

approximation
;
iecomAnded. in chapter 2, equation 2.12. A detai

description of.the nonoverlapping Year 07 through Year 10 NAL, es
...

can be found in RTI's final, for assessment Year 07 [ref 3].
.

.
.

.
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Appendix A: TAYLOR SE IBS L'ItAartiTioN FOR REGRESSION COEFFICIENTS

?ovulation Definitions
I,

. ..
Consider a finite universe C witn

0
N units U(i).

J
Associate witn the

i -th unit a :,rarfate value Y(i) and a row vector of (p-1) regressors

X(i) <X;1(i) X1(i) ...-Xp(i) >. (A.1)

41.

*
The linear prediction-equation for Y(i) of the form

Y(i) (i),e (h:2)

vhich minibizes thA sum of squared deviations
4" . . 2.

t
.."Z. (Y(i) - :c(i)$)

2
(A.3)

icU

is tne familiar least-squares regression equation where_i is a solution to
. b

tne so- called 'normal equations'

where

(X
T
X)S X-Y

X
T
X.E XT(i):C(i)

and
4

-' .

1' T
7 XYE: XTM Y(i).

. iEU.
** .

7
.

.

If X-X has rank p-1, there is a unique solution for £ in (A.4); namely
.

. .

3 = (X*4 4,,
TZoft (A..5) . , ,

If the pT1 equations represented by tii'e matrix equation (A.4); are not lineatl-:

inceiendent, redundant equations can bl;replace4 b:ceindependent linear
. ,

estriction on the Ls. While the following development lie sited t the
.

full rank case it is not difficult t7tend-the resulp d ectl'i to a
,

particular.r icted solution. .

,

. . 1 ..

...

Estimation ' %
..

.

Suppose that a sample S of n units is' selected from t he universe U.
. ... .

1"(i) denote the probability that unit, t(i) will be included in sue 7, a

-pie: 'nbiased Horyitz-Thompson estimators for *.,:.7 and XTY are

(x %):w :, X
T
(k) X(%) 1-(%)

kEs '

;91

.
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And
444ftr...

(cTy) = E X
T
(k) Y(k)-7ir(k).- (A.6b)

Ices

Using these estimators, e solve for b in the estimated set of-normal

equations

,(xTx)15 ='(xTy). (A.7)

As an estimator of B the population vector of regression coefficients

b = (x
T
x)
-1

(x
T
y) can be viewed as a matrix version of the combined ratio
A A

estimator R (X)
1
(Y). Tbis analogy will be strengthened by to form of

'the Taylor series approximation for (b=8).-

Taylor Series Variance Approximation

. To generate the first order Taylor series approximation-for b, we

;begin by evaluating the partial-derivatives
-

, - (4
abia (x

T
y) for j .t 0, 1, p (A.8a)

-and

T .

t/a (x X)ji... fdt j = 0, 1, .... .p

J, ..!P

.(A` 8b)

where ,(c y) represents the j-th element in the (P+1) x 1 column vector

(x
T
y). and (x

T
x)jj, is the (jje)-th element of the (p+l) x (p+l) symmetric

matrix (x
T
x).

First, we notice that

{a(xTx)b/a(xTX)j
5

(x
T
x) {3b a (x

T
y) }

a(xy)/a(x y)

Therefore

where,

.

This 'allows us to w rite

.-
a

(xTx) {abia(xTyy

e (0
j 111!therwise

f j r
A.

{ab/a(x'Y) )

I

->

'41

(A.9)

(A.10)

(A.11)

.

r.

(1`



* ( % r

:otice tat '.i4 is a (1?-61) x 1 column vector 'with a 1, in row j and zeros\
.. 4

e_ ewpere. To evtluate the partial derivative of b with respect to the
_

,
,

elements of (X
T
X) we nott that.

.,, T ..., T. IA T
.

(x xfb,n (x
T
x),,: = a (x

y.

)ro.(x x) . 2 (A.12)
J.3 , iii

.

(A.13).

ante 4.

Wx)0b/a(x1.14. {a(x'x)/(x
T

b = 0x)jj:
.J4 .

-"Recalling that (X
T
X) is symmetric,.we see that

{a(x
T
x)ro(x

T
x) ,) = D

5-
-where the (r,c)-th Clement of D. ,'is

33

djr(rc) x (1 !(jJT));53(063.(c);

tasth i(jj') = if j =.i' and zero otherwise. This leads to

T , T -1
(x x)

ji
11 kx x'

D
jj'

b

I

(A.14),

(A.15)

.... . 1where D , is a (p+1) x (p-;15-,agmaelrl.c matrix having is in positions 0, )
Ji .7 ":1

an4 (j'j) end zeros el echere..

Evalupcing the pa ,ial derivatives in equations (A.11) and (A.15) at the

point qx
I
3A) xX:X; (T y) > '.7e can approimate b with the first orcar

Taylor series linearization ^41..k

* / .

.,b
.

j(x
T
y) - (X

T
Y )):;b/(x

T

j.0 J.

P P
,

-, 7. : ((x
T
x) ,-,- (X

T
X) ) 0b7;(x

T
x) ,)

j=0 j? ..li ii' . ii

which becomes
) .

.
.T -1 \.. T T

P

b j. 3i. (% X) ,Z` i4x Y) 7 (x y) 1 :
. .i i 'i

't j..0

J .
1,

- P ? .=4.n. n.....m.........*
". WXY 2 l [ (K %) 1... (% ...) /D a,4

, if J",11.0 .11.j ..), .

4 N
I.

.
.

, \
.." 1 .

. .
.

Alt.0 . ,
/-

'96 /-
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A 1
Recalling the definitions of 8

j JJ
and D , it is easy to she' that

,. . ka.
r i

and

[ (x
T
Y). - (XTY) r (x

r

y) - (X
T
Y) ]

j-o.

P P . ,

E E ((xTx) . (xTx) ,1 D "1 * ((xTx) (XTX)i (A.18b)
jr0 jirj J.J, Ji - ii

- .
,

. .

4

(A.18a)

This allows ,us td rewrite (,A.17) as
.

i . . ts 1 (xTx) -1
(((xTy) -

(xTy)i
-

[(xTx)
- (c

T
x) i 8)., -(A.19) /

-/4 Finally, observing, that (XTX)8 r (XTY) we have
.

. 4

)---' `
.

b A 8 + (X
T
X)
-1

[ (x
T
y) - x tPT

x)
,,,

i. (4.20)

To exploit the result in (A.20) in order tti\approximate the sampling

variance of ;7; we can define

3(k)
T
X)
-1

[ °(x
T
y)
k

(x
T
x),8]

: 4where (x
T
y)k XT(k) Y(k)

f

gind "
. . .

. .
ij

)
k

- X
T
(k) X(lor

,

The corresponding Horvitz- Thompson estimator it4
E 3(c.)/n(k)

1 (X.Tp-1 1,(xTy) (x
T
x)834

Combining ('A.2.) and (A.22) we see that( 1,

(A.21)

(A.22) '

.

IA A

o
*

,

A a A (b- 8).
4

i .
(A23)

The result in (A.22) leads one to fie following approximationvfor the

generalized meat-squared-error of b, our vector of p + 1 estimated

regression Coefficients:
. i

. GMSE (0 A Es ((b-§)(b-8).T) .

,..,

/ '
A £

:I

{i gh.

.

0 VAR (I), .
.4

t
.

1.1..
,

,

.
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since E
s

4.,:11. d 0 the (ptl) x 1 null vector.
.

If VAR (T) is the sampling variance formula for an estimated total'
.

. .
.

. ,

from a particular aampling desie: (D), then the generalized mean-squared-
-

1

f--44: error for a vector -ol (p 4.1) regression coefficients.' estimated from D is

k'approximately

-

L'HSE = YARD {E;

-where E,is the lihearized statistic̀
.r

i*= (XTX)-1 E 1(XTY) k (xTx)
k.

B) / -7(k) .

r'.
a

(A.23). f

4

In the following, section, we will exploit equation (A.25) to, produce the

'Taylor Series' variance estimator ox gore precisely, the4generalized mean-
,

squared-error estimator'for b. .%
: (

E

Taylor Se ries Variance Estimator
4

approximatlon for C:SE'fb: developed in

that if var
D
(T) represents ansappr.opriate,

total T from design D, then var
D
(?). is

the assoc.iated estimator for"MSE (b;. Since the linearized variate value

'IE(k) in (A.21) is a Lunctionaof the unknown populatian..quantitiesC, .;)

.and cipea.s obliged to impose another level, of approximation it this

poil/instead E(k), we use

' T -1 T 1.

Recalling the Taylor series

the previous section, it is.clear

, lia-Aance estimator for the sample

TT. -I

-.%1
z(k) = (x x) ( (x YYk (x!)k (A.26)

substituting pur sample estimates for the uninawn,population paramOters.

It is interesting to note at this' point that (A.26), is a matrix analogue of

the 'Taylorized% variate used to approximate the variance of the ratio

R - (Y /X). Expressing this ratio as R = 60-1(Y) and making the associations

(2)-1 (xTxy-1
and (Y) <=> (xTx), the relationshiplbetw en (A.26) and

the familiar 1,

r
Is

z^(k) - [Y(k) R X (k)) / X

60-1 P17 (k) X(k) i)

is obvious. '"

To illustrate the method, we can consider a stratified gi

cluster sample with h=1(1)1i strata, and 4(h) clusters selected' rest N(n)

(A..2.7)

le random

..,

. e,

.. .- . ..
. ' "1 . kr

. . ,

N. 6 , . 95
4 A

,
s, .

98
. % go . .

il %
*4 a, 4q4 .41

yid

t.

4.
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.

without.replacement. If y(hik, Is the variate value associated with the

k-th unit [)c -1(1) &hi)] id cluster-i of stratum -h and X(hik) id the

corresponding 1 z (p+1) row'vector.of regresiors,'we use the expanded

cluster totals .

M(hi)
x
T
y)

hi
N(h) E X

T
(hilt) Y(hik)/n(h)

hal

and
. "14(hi)

. (x
T
f)hi n(h) E X

T
(hik) X (hik)/n(h)

, kal
- v-

1 .
.

to form

ft

t - 1 (x
T
Y)hi - (x

T
x)hi

where

and
t

.T -1 T
b a (x x) (x y)

)

ft n(;) \
(xT:t) n E E (ix x)hi

hal 1161

H n(h)
(x y) - E E (x Y)hi

hal

m1/4(A.28a)

-

(A.28b)

(A.29)

. Then, we calculate , i

, , H T 1 !L

) { E -(1- f(h)) n(h) sty (h)) (x-x (A.30)1 t gbse {b) - ( XS X ....1.

hal z
a

.

where f(h) - n(h)/N(h) and ft .

. s
Ina

n(h) , ,
1.,

, T
n(h)-1.]s.

2
a. E p[i(hi) - 1(h.)][i(hi) , z(h.)] /[

1 (h)

'

.10."r ..
-

I
n(h) ,

'with.1(h.) a. E i(hi)/n(h).
Jul

. A 0

Statistical Inference

. Researchers are often interested intesting hypotheses about re\atitih-
.

ships among population regtessfon coefficients. While there is no rigorous

solution to the.general linear hypothesis problem in a finite populatiOn
.

context, we suggest .0, heuristic approach which relies on the ceptial iting
a ,

.

OEM
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11,

tendency of estimated coefficient
vectors b to have, approximately

the multi-

-,

variate normal sampling distribution
With mean ¢ and variance -covariance

matrixVarD-
{i} as specified in (A.25). To the extent that ehis approxima-

tion for the sampling
distribution of b holds,.one can justify the following

approach for testing

T
U0:

Form the test statistic

is -6 versus' A
c soa

P
-"

T TT ^ -1 T

T
c
= (C b 6) LC varD(E) C) (C b 6)

and (eject H ifiT
2

Ho c

disIrkbution
with c

variate analogue of

When the dere

cova riance matrix v

variate analogue df

F-transformed versi

(A.31rt

v
(A:32)

exceeds the upper.a percentage
point of the Chi-Square

= rank. (0) degrees of.Ireerom.. This test
is the multi -

the common large sample normal theory test.

es ,of freedom (df)
'associated with the estimated variance-

,.

bar
D
(3) drops below 60, (A.32) may b4 viewed as the multi-

Student's T; namely, Hotelling's T
2

statistic. The.

on of
Hotelling's V is expressed as

F
df + 1 - 'T2

(df)c c

.
where df is the degrees of freedom gtsociatedFi,th

virD
(3)

'
For our

example in the previout section we would recommend tae .approximation

df 4 n(+)-H where ri+) is 'the total
number of clusters min the sample

H is the number` of strata.. The transforl;ed statistic r is compared to the

upper a percentase,point'of
Fisher's F distribution

withic.1(df + 1 c)

degrees of freedom.

(A.33)
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